A Mean-Variance Hybrid-Entropy Model for Portfolio Selection with Fuzzy Returns

被引:16
作者
Zhou, Rongxi [1 ]
Zhan, Yu [1 ]
Cai, Ru [1 ]
Tong, Guanqun [1 ]
机构
[1] Beijing Univ Chem Technol, Sch Econ & Management, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
portfolio selection; fuzzy returns; hybrid entropy; multi-objective genetic algorithm; Markov prediction; OPTIMIZATION; MARKET; RISK; RULE;
D O I
10.3390/e17053319
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we define the portfolio return as fuzzy average yield and risk as hybrid-entropy and variance to deal with the portfolio selection problem with both random uncertainty and fuzzy uncertainty, and propose a mean-variance hybrid-entropy model (MVHEM). A multi-objective genetic algorithm named Non-dominated Sorting Genetic Algorithm II (NSGA-II) is introduced to solve the model. We make empirical comparisons by using the data from the Shanghai and Shenzhen stock exchanges in China. The results show that the MVHEM generally performs better than the traditional portfolio selection models.
引用
收藏
页码:3319 / 3331
页数:13
相关论文
共 28 条
[1]  
Bawa V.S., 1975, J. Financ. Econ., V2, P95, DOI DOI 10.1016/0304-405X(75)90025-2
[2]   Optimal portfolio diversification using the maximum entropy principle [J].
Bera, Anil K. ;
Park, Sung Y. .
ECONOMETRIC REVIEWS, 2008, 27 (4-6) :484-512
[3]   Portfolio optimization under a minimax rule [J].
Cai, XQ ;
Teo, KL ;
Yang, XQ ;
Zhou, XY .
MANAGEMENT SCIENCE, 2000, 46 (07) :957-972
[4]  
Cheng P., 2001, Journal of Real Estate Portfolio Management, V7, P125, DOI [10.1080/10835547.2001.12089636, DOI 10.1080/10835547.2001.12089636]
[5]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[6]   DEFINITION OF NONPROBABILISTIC ENTROPY IN SETTING OF FUZZY SETS THEORY [J].
DELUCA, A ;
TERMINI, S .
INFORMATION AND CONTROL, 1972, 20 (04) :301-&
[7]  
Doumpos M, 2012, SPRINGER OPTIM APPL, V70, P253
[8]   Mean-Entropy Models for Fuzzy Portfolio Selection [J].
Huang, Xiaoxia .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2008, 16 (04) :1096-1101
[9]  
Jana P., 2007, Appl. Math. Optim, V9, P181
[10]  
Kalyagin V. A., 2014, SPRINGER OPTIM APPL, V100, P127