Health Informatics: Clinical Information Systems and Artificial Intelligence to Support Medicine in the CoViD-19 Pandemic

被引:7
作者
Combi, Carlo [1 ]
Pozzi, Giuseppe [2 ]
机构
[1] Univ Verona, Dipartimento Informat, Str Grazie 15, I-37134 Verona, Italy
[2] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, Pza Lda Vinci 32, I-20133 Milan, Italy
来源
2021 IEEE 9TH INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2021) | 2021年
关键词
Clinical information systems; Artificial Intelligence; CoViD-19; Taxonomy; RAPID IMPLEMENTATION; BIG DATA; TECHNOLOGY; AI; CLASSIFICATION; CORONAVIRUS; PROGRAM; IOT;
D O I
10.1109/ICHI52183.2021.00083
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The CoViD-19 pandemic generated huge quantities of healthcare and clinical data. Artificial intelligence (AI) may help in processing such data, to support patient care, and to plan healthcare actions for pandemic control. This paper aims at analyzing the state of the art of AI and Clinical Information Systems to support the management of CoViD-19 patients. The analysis is performed according to a proposed taxonomy based on methodologies and techniques, and it also discusses some research directions. We consider and extend some recent taxonomies, for classifying intelligent information systems and Artificial Intelligence techniques for data-intensive applications. We consider methodologies and techniques for CoViD-19 pandemic data analysis. We describe the state of the art, according to the proposed taxonomy, i.e., data collection, machine learning, natural language processing, process mining and pathway identification, decision support systems. We analyze and highlight some emerging directions for shortand mid-term research activities.
引用
收藏
页码:480 / 488
页数:9
相关论文
共 67 条
[1]  
A. I. for AI, 2020, COVID 19 OP RES DAT
[2]   Information systems in the age of pandemics: COVID-19 and beyond [J].
Agerfalk, Par J. ;
Conboy, Kieran ;
Myers, Michael D. .
EUROPEAN JOURNAL OF INFORMATION SYSTEMS, 2020, 29 (03) :203-207
[3]   Lies Kill, Facts Save: Detecting COVID-19 Misinformation in Twitter [J].
Al-Rakhami, Mabrook S. ;
Al-Amri, Atif M. .
IEEE ACCESS, 2020, 8 :155961-155970
[4]   Detection-based prioritisation: Framework of multi-laboratory characteristics for asymptomatic COVID-19 carriers based on integrated Entropy-TOPSIS methods [J].
Albahri, A. S. ;
Hamid, Rula A. ;
Albahri, O. S. ;
Zaidan, A. A. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 111
[5]   Role of biological Data Mining and Machine Learning Techniques in Detecting and Diagnosing the Novel Coronavirus (COVID-19): A Systematic Review [J].
Albahri, A. S. ;
Hamid, Rula A. ;
Alwan, Jwan K. ;
Al-qays, Z. T. ;
Zaidan, A. A. ;
Zaidan, B. B. ;
Albahri, A. O. S. ;
AlAmoodi, A. H. ;
Khlaf, Jamal Mawlood ;
Almahdi, E. M. ;
Thabet, Eman ;
Hadi, Suha M. ;
Mohammed, K., I ;
Alsalem, M. A. ;
Al-Obaidi, Jameel R. ;
Madhloom, H. T. .
JOURNAL OF MEDICAL SYSTEMS, 2020, 44 (07)
[6]  
Aliakbarpoor Y, 2017, 2017 IEEE 3RD INTERNATIONAL FORUM ON RESEARCH AND TECHNOLOGIES FOR SOCIETY AND INDUSTRY (RTSI), P314
[7]   Ambulatory Clinician's Guide to Inpatient Service: An Innovative Rapid Onboarding Strategy for the COVID-19 Pandemic [J].
Altman, Richard L. ;
Anstett, Tyler ;
Simpson, Jennifer R. ;
Del Pino-Jones, Amira ;
Lin, Chen-Tan ;
Pell, Jonathan .
APPLIED CLINICAL INFORMATICS, 2020, 11 (05) :802-806
[8]   Editorial Special Issue on "AI-Driven Informatics, Sensing, Imaging and Big Data Analytics for Fighting the COVID-19 Pandemic" [J].
Amini, Amir A. ;
Chen, Wei ;
Fortino, Giancarlo ;
Li, Ye ;
Pan, Yi ;
Wang, May Dongmei .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (10) :2731-2732
[9]  
[Anonymous], 1995, SER PRENTICE HALL SE
[10]  
[Anonymous], 2020, DBLP COMPUTER SCI BI