Ontology-enhanced Prompt-tuning for Few-shot Learning

被引:36
|
作者
Ye, Hongbin [1 ]
Zhang, Ningyu [1 ]
Deng, Shumin [1 ]
Chen, Xiang [1 ]
Chen, Hui [2 ]
Xiong, Feiyu [2 ]
Chen, Xi [3 ]
Chen, Huajun [1 ]
机构
[1] Zhejiang Univ, Hangzhou Innovat Ctr, AZFT Joint Lab Knowledge Engine, Hangzhou, Peoples R China
[2] Alibaba Grp, Hangzhou, Peoples R China
[3] Tecent, Shenzhen, Peoples R China
来源
PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22) | 2022年
基金
国家重点研发计划;
关键词
Few-shot Learning; Ontology; Prompt-tuning; Relation Extraction; Event Extraction; Knowledge Graph Completion;
D O I
10.1145/3485447.3511921
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Few-shot Learning (FSL) is aimed to make predictions based on a limited number of samples. Structured data such as knowledge graphs and ontology libraries has been leveraged to benefit the few-shot setting in various tasks. However, the priors adopted by the existing methods suffer from challenging knowledge missing, knowledge noise, and knowledge heterogeneity, which hinder the performance for few-shot learning. In this study, we explore knowledge injection for FSL with pre-trained language models and propose ontology-enhanced prompt-tuning (OntoPrompt). Specifically, we develop the ontology transformation based on the external knowledge graph to address the knowledge missing issue, which fulfills and converts structure knowledge to text. We further introduce span-sensitive knowledge injection via a visible matrix to select informative knowledge to handle the knowledge noise issue. To bridge the gap between knowledge and text, we propose a collective training algorithm to optimize representations jointly. We evaluate our proposed OntoPrompt in three tasks, including relation extraction, event extraction, and knowledge graph completion, with eight datasets. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.
引用
收藏
页码:778 / 787
页数:10
相关论文
共 50 条
  • [1] An enhanced few-shot text classification approach by integrating topic modeling and prompt-tuning
    Zhang, Yinghui
    Xu, Yichun
    Dong, Fangmin
    NEUROCOMPUTING, 2025, 617
  • [2] Adaptive multimodal prompt-tuning model for few-shot multimodal sentiment analysis
    Xiang, Yan
    Zhang, Anlan
    Guo, Junjun
    Huang, Yuxin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2025,
  • [3] REKP: Refined External Knowledge into Prompt-Tuning for Few-Shot Text Classification
    Dang, Yuzhuo
    Chen, Weijie
    Zhang, Xin
    Chen, Honghui
    MATHEMATICS, 2023, 11 (23)
  • [4] Incorporating target-aware knowledge into prompt-tuning for few-shot stance detection
    Wang, Shaokang
    Sun, Fuhui
    Wang, Xiaoyan
    Pan, Li
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (05)
  • [5] Few-Shot Composition Learning for Image Retrieval with Prompt Tuning
    Wu, Junda
    Wang, Rui
    Zhao, Handong
    Zhang, Ruiyi
    Lu, Chaochao
    Li, Shuai
    Henao, Ricardo
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 4, 2023, : 4729 - 4737
  • [6] Convert Cross-Domain Classification Into Few-Shot Learning: A Unified Prompt-Tuning Framework for Unsupervised Domain Adaptation
    Zhu, Yi
    Shen, Hui
    Li, Yun
    Qiang, Jipeng
    Yuan, Yunhao
    Wu, Xindong
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2025, 9 (01): : 810 - 821
  • [7] Enhanced Prompt Learning for Few-shot Text Classification Method
    Li R.
    Wei Z.
    Fan Y.
    Ye S.
    Zhang G.
    Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2024, 60 (01): : 1 - 12
  • [8] Hierarchical Prompt Tuning for Few-Shot Multi-Task Learning
    Liu, Jingping
    Chen, Tao
    Liang, Zujie
    Jiang, Haiyun
    Xiao, Yanghua
    Wei, Feng
    Qian, Yuxi
    Hao, Zhenghong
    Han, Bing
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 1556 - 1565
  • [9] PPT: Pre-trained Prompt Tuning for Few-shot Learning
    Gu, Yuxian
    Han, Xu
    Liu, Zhiyuan
    Huang, Minlie
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 8410 - 8423
  • [10] Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification
    Liu, Jinshuo
    Yang, Lu
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)