Sentiment Analysis of Autonomous Vehicles After Extreme Events Using Social Media Data

被引:3
|
作者
Chen, Xu
Zeng, Haohan
Xu, Heng
Di, Xuan
机构
来源
2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC) | 2021年
关键词
Autonomous vehicles; Sentiment analysis; Social media data; COVID-19;
D O I
10.1109/ITSC48978.2021.9564721
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to leverage social media data to understand the public opinion on autonomous driving after extreme events, including the Uber and Tesla crashes and the COVID-19 pandemic. Uber and Tesla crashes that happened consecutively in 2018 have posed uncertainty and the public concern toward the autonomous vehicle (AV) technology. The COVID-19 pandemic has drastically increased people's fear of taking mass transit, while the social distancing policy could easily favor contactless travel experiences provided by AVs. To understand people's attitudinal changes before and after these extreme events, three sources of social media data are leveraged: Facebook, Twitter and Reddit. Sentiment analysis is performed with BERT (Bidirectional Encoder Representation from Transformers) model to study the change in people's attitude toward AVs. Results show that after Uber and Tesla crashes, the proportion of people with a negative attitude increases, while after the pandemic, the proportion of people with a positive attitude increases. These results are quite consistent with our intuition. We then conduct regression analysis using XGBoost to analyze the impact of individual's demographic information on his/her sentiment toward AVs. We find that Age has the most significant effect on people's attitudes toward AVs. Engineers and entrepreneurs are more likely to introduce and discuss the AV technology in social media.
引用
收藏
页码:1211 / 1216
页数:6
相关论文
共 50 条
  • [21] Topic-level sentiment analysis of social media data using deep learning
    Pathak, Ajeet Ram
    Pandey, Manjusha
    Rautaray, Siddharth
    APPLIED SOFT COMPUTING, 2021, 108
  • [22] Sentiment Analysis of Social Media Data on Ebola Outbreak Using Deep Learning Classifiers
    Mirugwe, Alex
    Ashaba, Clare
    Namale, Alice
    Akello, Evelyn
    Bichetero, Edward
    Kansiime, Edgar
    Nyirenda, Juwa
    LIFE-BASEL, 2024, 14 (06):
  • [23] Code-Mixed Sentiment Analysis using Transformer for Twitter Social Media Data
    Astuti, Laksmita Widya
    Sari, Yunita
    Suprapto
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (10) : 498 - 504
  • [24] Sentiment Analysis in Social Media Data for Depression Detection Using Artificial Intelligence: A Review
    Babu N.V.
    Kanaga E.G.M.
    SN Computer Science, 2022, 3 (1)
  • [25] Electric Vehicles in the Digital Discourse: A Sentiment Analysis of Social Media Engagement for Turkey
    Senyapar, Hafize Nurgul Durmus
    SAGE OPEN, 2024, 14 (04):
  • [26] Proposed Methodology for Sentiment Analysis of Social Media Data Focusing on the Sentiment Analysis in Political Domain
    Singh, Hargobind
    Singh, Amritpal
    2021 INTERNATIONAL CONFERENCE ON COMPUTING SCIENCES (ICCS 2021), 2021, : 129 - 132
  • [27] The emergence of social media data and sentiment analysis in election prediction
    Chauhan, Priyavrat
    Sharma, Nonita
    Sikka, Geeta
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (02) : 2601 - 2627
  • [28] Sentiment Analysis on Social Media
    Neri, Federico
    Aliprandi, Carlo
    Capeci, Federico
    Cuadros, Montserrat
    By, Tomas
    2012 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2012, : 919 - 926
  • [29] Sentiment Analysis for Social Media
    Iglesias, Carlos A.
    Moreno, Antonio
    APPLIED SCIENCES-BASEL, 2019, 9 (23):
  • [30] The emergence of social media data and sentiment analysis in election prediction
    Priyavrat Chauhan
    Nonita Sharma
    Geeta Sikka
    Journal of Ambient Intelligence and Humanized Computing, 2021, 12 : 2601 - 2627