Reverse order law for the group inverses

被引:41
作者
Deng, Chun Yuan [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Group inverse; Block operator matrix; GENERALIZED INVERSES; MATRICES; PRODUCTS;
D O I
10.1016/j.jmaa.2011.04.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is to present some equivalent conditions concerning the reverse order law (AB)(#) = B(#)A(#) for the group invertible operators A, B on a Hilbert space H. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:663 / 671
页数:9
相关论文
共 19 条
[1]  
[Anonymous], 1979, Generalized inverses of linear transformations
[2]   Moore-Penrose inverses and commuting elements of C*-algebras [J].
Benitez, Julio .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (02) :766-770
[3]   Reverse order law of group inverses of products of two matrices [J].
Cao, CG ;
Zhang, X ;
Tang, XM .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 158 (02) :489-495
[4]  
Cao CG, 2009, ELECTRON J LINEAR AL, V18, P600
[5]  
Cline RE, 1965, 592 MRC
[6]   A comment on some recent results concerning the reverse order law for {1,3,4}-inverses [J].
Cvetkovic-Ilic, Dragana S. ;
Pavlovic, Vladimir .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) :105-109
[7]  
DRAGAN S, 2010, J MATH ANAL APPL, V361, P252
[8]   NOTE ON GENERALIZED INVERSE OF A MATRIX PRODUCT [J].
GREVILLE, TN .
SIAM REVIEW, 1966, 8 (04) :518-&
[9]  
Groetsch Charles W., 1977, Generalized inverses of linear operators
[10]  
HARTWIG RE, 1977, AUSTR J MATH A, V24, P10