Robust port-Hamiltonian representations of passive systems

被引:42
作者
Beattie, Christopher A. [1 ]
Mehrmann, Volker [2 ]
Van Dooren, Paul [3 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] TU Berlin, Inst Math MA 4 5, D-10623 Berlin, Germany
[3] UCL, Dept Engn Math, Louvain La Neuve, Belgium
关键词
Port-Hamiltonian system; Positive real system; Stability radius; Passivity radius; Linear matrix inequality;
D O I
10.1016/j.automatica.2018.11.013
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We discuss robust representations of stable, passive systems in particular coordinate systems, focussing especially on port-Hamiltonian representations. Such representations are typically not unique and the degrees of freedom associated with nonuniqueness are related to the solution set of the Kalman-Yakubovich-Popov linear matrix inequality (LMI). In this paper we analyze robustness measures for different possible port-Hamiltonian representations and relate it to quality functions defined in terms of eigenvalues of the matrix solution of the LMI. In particular, we look at the analytic center of this LMI. Within this framework, we derive inequalities for the passivity radius of the given model representation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:182 / 186
页数:5
相关论文
共 13 条
[1]  
Beattie C, 2018, PREPRINT
[2]  
BENNER P., 2015, Surveys in Differential-algebraic Equations III, P117, DOI DOI 10.1007/978-3-319-22428-23
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA
[4]  
Genin Y, 1999, P EUR CONTR C
[5]   Computing the nearest stable matrix pairs [J].
Gillis, Nicolas ;
Mehrmann, Volker ;
Sharma, Punit .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
[6]   FINDING THE NEAREST POSITIVE-REAL SYSTEM [J].
Gillis, Nicolas ;
Sharma, Punit .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (02) :1022-1047
[7]   Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems [J].
Gugercin, Serkan ;
Polyuga, Rostyslav V. ;
Beattie, Christopher ;
van der Schaft, Arjan .
AUTOMATICA, 2012, 48 (09) :1963-1974
[8]   STABILITY RADII FOR LINEAR HAMILTONIAN SYSTEMS WITH DISSIPATION UNDER STRUCTURE-PRESERVING PERTURBATIONS [J].
Mehl, Christian ;
Mehrmann, Volker ;
Sharma, Punit .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2016, 37 (04) :1625-1654
[9]  
Nesterov Y., 1994, INTERIOR POINT POLYN, DOI DOI 10.1137/1.9781611970791
[10]  
Overton ML, 2005, IEEE DECIS CONTR P, P7960