Normal approximation for quasi-associated random fields

被引:35
作者
Bulinski, A
Suquet, C
机构
[1] Moscow MV Lomonosov State Univ, Dept Math & Mech, Moscow 119899, Russia
[2] Univ Lille 1, UFR Math, CNRS, F-59655 Villeneuve Dascq, France
关键词
random fields; dependence conditions; positive and negative association; Lindeberg function; CLT; convergence rates; maximum of partial sums;
D O I
10.1016/S0167-7152(01)00108-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For quasi-associated random fields (comprising negatively and positively dependent fields) on Z(d) we use Stein's method to establish the rate of normal approximation for partial sums taken over arbitrary finite subsets U of Z(d). (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:215 / 226
页数:12
相关论文
共 31 条
[1]  
Bakhtin Y.Y., 1997, FUNDAM PRIKL MAT, V3, P1101
[2]   ON THE CONVERGENCE RATE IN THE CENTRAL LIMIT-THEOREM FOR ASSOCIATED PROCESSES [J].
BIRKEL, T .
ANNALS OF PROBABILITY, 1988, 16 (04) :1685-1698
[3]   MULTILINEAR FORMS AND MEASURES OF DEPENDENCE BETWEEN RANDOM-VARIABLES [J].
BRADLEY, RC ;
BRYC, W .
JOURNAL OF MULTIVARIATE ANALYSIS, 1985, 16 (03) :335-367
[4]  
Bulinski A., 1998, FUNDAM PRIKL MAT, P479
[5]  
BULINSKI AV, 1996, FUND APPL MATH, V2, P891
[6]  
Bulinskii A. V., 1996, J MATH SCI, V81, P2905, DOI 10.1007/BF02362501
[7]  
Bulinskii A. V., 1995, FUNDAM PRIKL MAT, V1, P623
[8]   A triangular central limit theorem under a new weak dependence condition [J].
Coulon-Prieur, C ;
Doukhan, P .
STATISTICS & PROBABILITY LETTERS, 2000, 47 (01) :61-68
[9]   CENTRAL LIMIT-THEOREMS FOR ASSOCIATED RANDOM-VARIABLES AND THE PERCOLATION MODEL [J].
COX, JT ;
GRIMMETT, G .
ANNALS OF PROBABILITY, 1984, 12 (02) :514-528
[10]   A new weak dependence condition and applications to moment inequalities [J].
Doukhan, P ;
Louhichi, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1999, 84 (02) :313-342