How good are projection methods for convex feasibility problems?

被引:25
作者
Gould, Nicholas I. M. [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
基金
英国工程与自然科学研究理事会;
关键词
projection methods; convex feasibility problems; numerical evaluation;
D O I
10.1007/s10589-007-9073-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider simple projection methods for solving convex feasibility problems. Both successive and sequential methods are considered, and heuristics to improve these are suggested. Unfortunately, particularly given the large literature which might make one think otherwise, numerical tests indicate that in general none of the variants considered are especially effective or competitive with more sophisticated alternatives.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 33 条
[1]  
[Anonymous], NAVAL RES LOGISTICS
[2]  
Bauschke H.H., 1997, CONT MATH, V204, P1
[3]   Reflection-projection method for convex feasibility problems with an obtuse cone [J].
Bauschke, HH ;
Kruk, SG .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 120 (03) :503-531
[4]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[5]   Extrapolation algorithm for affine-convex feasibility problems [J].
Bauschke, HH ;
Combettes, PL ;
Kruk, SG .
NUMERICAL ALGORITHMS, 2006, 41 (03) :239-274
[6]  
Bauschke HH., 1993, Set-Valued Analysis, V1, P185, DOI [DOI 10.1007/BF01027691.49,50, DOI 10.1007/BF01027691]
[7]   ON SOME OPTIMIZATION TECHNIQUES IN IMAGE-RECONSTRUCTION FROM PROJECTIONS [J].
CENSOR, Y ;
HERMAN, GT .
APPLIED NUMERICAL MATHEMATICS, 1987, 3 (05) :365-391
[8]   ROW-ACTION METHODS FOR HUGE AND SPARSE SYSTEMS AND THEIR APPLICATIONS [J].
CENSOR, Y .
SIAM REVIEW, 1981, 23 (04) :444-446
[9]  
Censor Y., 1997, PARALLEL OPTIMIZATIO