On positive solutions of fully nonlinear degenerate Lane-Emden type equations

被引:11
作者
Galise, Giulio [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
关键词
Fully nonlinear degenerate elliptic operators; Nonproper sub/superlinear equations; Critical exponents; Comparison principle; Viscosity solutions; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1016/j.jde.2018.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either P-k(-) (D(2)u) or P-k(+)(D(2)u), some sort of "truncated Laplacians", given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P-k(-), we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1697
页数:23
相关论文
共 33 条
[11]   ZERO ORDER PERTURBATIONS TO FULLY NONLINEAR EQUATIONS: COMPARISON, EXISTENCE AND UNIQUENESS [J].
Charro, Fernando ;
Peral, Ireneo .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (01) :131-164
[12]   ON VISCOSITY SOLUTIONS TO THE DIRICHLET PROBLEM FOR ELLIPTIC BRANCHES OF INHOMOGENEOUS FULLY NONLINEAR EQUATIONS [J].
Cirant, Marco ;
Payne, Kevin R. .
PUBLICACIONS MATEMATIQUES, 2017, 61 (02) :529-575
[13]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[14]   On the Liouville property for fully nonlinear equations [J].
Cutrì, A ;
Leoni, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (02) :219-245
[15]  
DEFIGUEIREDO DG, 1982, J MATH PURE APPL, V61, P41
[16]   On the inequality [J].
Dolcetta, Italo Capuzzo ;
Leoni, Fabiana ;
Vitolo, Antonio .
MATHEMATISCHE ANNALEN, 2016, 365 (1-2) :423-448
[17]   Positive radial solutions to a 'semilinear' equation involving the Pucci's operator [J].
Felmer, PL ;
Quaas, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (02) :376-393
[18]   On critical exponents for the Pucci's extremal operators [J].
Felmer, PL ;
Quaas, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :843-865
[19]   Existence results for fully nonlinear equations in radial domains [J].
Galise, Giulio ;
Leoni, Fabiana ;
Pacella, Filomena .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) :757-779
[20]  
Galise G, 2017, ADV DIFFERENTIAL EQU, V22, P77