On positive solutions of fully nonlinear degenerate Lane-Emden type equations

被引:11
作者
Galise, Giulio [1 ]
机构
[1] Univ Milan, Dipartimento Matemat Federigo Enriques, Via Cesare Saldini 50, I-20133 Milan, Italy
关键词
Fully nonlinear degenerate elliptic operators; Nonproper sub/superlinear equations; Critical exponents; Comparison principle; Viscosity solutions; VISCOSITY SOLUTIONS; ELLIPTIC-EQUATIONS; MAXIMUM PRINCIPLE; DIRICHLET PROBLEM; EXISTENCE;
D O I
10.1016/j.jde.2018.08.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove existence and uniqueness results of positive viscosity solutions of fully nonlinear degenerate elliptic equations with power-like zero order perturbations in bounded domains. The principal part of such equations is either P-k(-) (D(2)u) or P-k(+)(D(2)u), some sort of "truncated Laplacians", given respectively by the smallest and the largest partial sum of k eigenvalues of the Hessian matrix. New phenomena with respect to the semilinear case occur. Moreover, for P-k(-), we explicitly find the critical exponent p of the power nonlinearity that separates the existence and nonexistence range of nontrivial solutions with zero Dirichlet boundary condition. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1675 / 1697
页数:23
相关论文
共 33 条
[1]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[2]  
Amendola ME, 2013, DIFFER INTEGRAL EQU, V26, P845
[3]  
[Anonymous], 1995, C PUBLICATIONS
[4]   THE PRINCIPAL EIGENVALUE AND MAXIMUM PRINCIPLE FOR 2ND-ORDER ELLIPTIC-OPERATORS IN GENERAL DOMAINS [J].
BERESTYCKI, H ;
NIRENBERG, L ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (01) :47-92
[5]   A family of degenerate elliptic operators: Maximum principle and its consequences [J].
Birindelli, Isabeau ;
Galise, Giulio ;
Ishii, Hitoshi .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02) :417-441
[6]   Liouville theorems for a family of very degenerate elliptic nonlinear operators [J].
Birindelli, Isabeau ;
Galise, Giulio ;
Leoni, Fabiana .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 161 :198-211
[7]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[8]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[9]   Some Remarks on Singular Solutions of Nonlinear Elliptic Equations III: Viscosity Solutions Including Parabolic Operators [J].
Caffarelli, Luis ;
Li, Yanyan ;
Nirenberg, Louis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (01) :109-143
[10]   Some remarks on singular solutions of nonlinear elliptic equations. I [J].
Caffarelli, Luis ;
Li, Yan Yan ;
Nirenberg, Louis .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (02) :353-395