Internal flows and energy circulation in light beams

被引:313
作者
Bekshaev, Aleksandr [1 ]
Bliokh, Konstantin Y. [2 ]
Soskin, Marat [3 ]
机构
[1] II Mechnikov Natl Univ, Dvorianska 2, UA-65082 Odessa, Ukraine
[2] Natl Univ Ireland, Sch Phys, Appl Opt Grp, Galway, Ireland
[3] Natl Acad Sci Ukraine, Inst Phys, UA-03028 Kiev, Ukraine
基金
爱尔兰科学基金会;
关键词
optical beam; Poynting vector; electromagnetic energy flow; optical angular momentum; optical vortex; spin-orbit interaction; ORBITAL ANGULAR-MOMENTUM; OPTICAL VORTICES; TRANSVERSE SHIFT; POYNTING VECTOR; PARAXIAL BEAMS; PLANE-WAVE; ELECTROMAGNETIC DIFFRACTION; QUESTION NUMBER-79; GAUSSIAN BEAMS; FOCAL SPOT;
D O I
10.1088/2040-8978/13/5/053001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We review optical phenomena associated with the internal energy redistribution which accompany propagation and transformations of monochromatic light fields in homogeneous media. The total energy flow (linear-momentum density, Poynting vector) can be divided into a spin part associated with the polarization and an orbital part associated with the spatial inhomogeneity. We give a general description of the internal flows in the coordinate and momentum (angular spectrum) representations for both nonparaxial and paraxial fields. This enables one to determine local densities and integral values of the spin and orbital angular momenta of the field. We analyse patterns of the internal flows in standard beam models (Gaussian, Laguerre-Gaussian, flat-top beam, etc), which provide an insightful picture of the energy transport. Emphasis is given to the singular points of the flow fields. We describe the spin-orbit and orbit-orbit interactions in the processes of beam focusing and symmetry breakdown. Finally, we consider how the energy flows manifest themselves in the mechanical action on probing particles and in the transformations of a propagating beam subjected to a transverse perturbation.
引用
收藏
页数:32
相关论文
共 176 条
[11]   Response to Question #79. Does a plane wave carry spin angular momentum? [J].
Allen, L ;
Padgett, MJ .
AMERICAN JOURNAL OF PHYSICS, 2002, 70 (06) :567-568
[12]   ORBITAL ANGULAR-MOMENTUM OF LIGHT AND THE TRANSFORMATION OF LAGUERRE-GAUSSIAN LASER MODES [J].
ALLEN, L ;
BEIJERSBERGEN, MW ;
SPREEUW, RJC ;
WOERDMAN, JP .
PHYSICAL REVIEW A, 1992, 45 (11) :8185-8189
[13]  
Anan'ev Yu. A., 1995, Optics and Spectroscopy, V78, P729
[14]  
Anan'ev Yu. A., 1996, Optics and Spectroscopy, V80, P445
[15]  
ANANEV YA, 1994, OPT SPEKTROSK+, V76, P624
[16]  
Andronov AA, 1987, Theory of Oscillators
[17]   The relationship between topological characteristics of component vortices and polarization singularities [J].
Angelsky, O ;
Mokhun, A ;
Mokhun, I ;
Soskin, M .
OPTICS COMMUNICATIONS, 2002, 207 (1-6) :57-65
[18]  
[Anonymous], 2006, Proc. SPIE
[19]  
[Anonymous], 1985, Principles of phase conjugation
[20]  
BARANOVA NB, 1994, JETP LETT+, V59, P232