Synthesis and characterization of arginine-NIPAAm hybrid hydrogel as wound dressing: In vitro and in vivo study

被引:111
作者
Wu, De-Qun [1 ]
Zhu, Jie [1 ]
Han, Hua [1 ]
Zhang, Jun-Zhi [1 ]
Wu, Fei-Fei [1 ]
Qin, Xiao-Hong [1 ]
Yu, Jian-Yong [2 ]
机构
[1] Donghua Univ, Key Lab Text Sci & Technol, Minist Educ, Coll Text, 2999 North Renmin Rd, Shanghai 201620, Peoples R China
[2] Donghua Univ, Modern Text Inst, 1882 West Yanan Rd, Shanghai 200051, Peoples R China
关键词
Hydrogel dressing; Temperature response; Protein absorption; Antimicrobial property; Wound healing; DELIVERY; ACID; RELEASE; POLY(N-ISOPROPYLACRYLAMIDE); DEGRADATION; INFECTIONS; BACTERIA; FILMS; PH;
D O I
10.1016/j.actbio.2017.08.048
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A multi-functional hybrid hydrogel P(M-Arg/NIPAAm) with temperature response, anti-protein adsorption and antibacterial properties was prepared and applied as wound dressing. The hydrogel was carried out by free radical copolymerization of methacrylate arginine (M-Arg) and N-isopropyl acrylamide (NIPAAm) monomers using N,N'-methylene bisacrylamide as a crosslinker, and ammonium persulfate/N,N,N', N'-tetramethylethylenediamine as the redox initiator. To endow the antimicrobial property, chlorhexidine diacetate (CHX) was preloaded into the hydrogel and polyhexamethylene guanidine phosphate (PHMG) was grafted on the hydrogel surface, respectively. The antimicrobial property of two series of hydrogels was evaluated and compared. The successful synthesis of M-Arg, PHMG and hydrogels was proved by C-13 NMR, H-1 NMR and FTIR spectroscopy. The hydrogel morphology characterized by scanning electron microscopy confirmed that the homogeneous porous and interconnected structures of the hydrogels. The swelling, protein adsorption property, in vitro release of CHX, antimicrobial assessment, cell viability as well as in vivo wound healing in a mouse model were studied. The results showed the nontoxicity and antimicrobial P(M-Arg/NIPAAm) hydrogel accelerated the full-thickness wound healing process and had the potential application in wound dressing. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:305 / 316
页数:12
相关论文
共 55 条
[1]   Chitosan-hyaluronic acid/nano silver composite sponges for drug resistant bacteria infected diabetic wounds [J].
Anisha, B. S. ;
Biswas, Raja ;
Chennazhi, K. P. ;
Jayakumar, R. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 62 :310-320
[2]  
[Anonymous], J BURN CARE REHABIL
[3]  
[Anonymous], NANOSCALE UNPUB
[4]  
[Anonymous], J PHYS CHEM B
[5]  
[Anonymous], BIOMATERIALS
[6]  
[Anonymous], BIOMACROMOLECULES
[7]  
[Anonymous], J MONIED MAT RES A
[8]   Alginate hydrogels as biomaterials [J].
Augst, Alexander D. ;
Kong, Hyun Joon ;
Mooney, David J. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (08) :623-633
[9]   A SIMPLIFIED PREPARATION OF D-ARGININE [J].
BIRNBAUM, SM ;
WINITZ, M ;
GREENSTEIN, JP .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1956, 60 (02) :496-498
[10]   Enzymatic degradation behavior and mechanism of poly(lactide-co-glycolide) foams by trypsin [J].
Cai, Q ;
Shi, GX ;
Bei, JZ ;
Wang, SG .
BIOMATERIALS, 2003, 24 (04) :629-638