Tandem catalysis on adjacent active motifs of copper grain boundary for efficient CO2 electroreduction toward C2 products

被引:46
作者
Luo, Tao [1 ]
Liu, Kang [1 ]
Fu, Junwei [1 ]
Chen, Shanyong [1 ]
Li, Hongmei [1 ]
Hu, Junhua [2 ]
Liu, Min [1 ]
机构
[1] Cent South Univ, Hunan Joint Int Res Ctr Carbon Dioxide Resource U, Sch Phys & Elect, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450002, Henan, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2022年 / 70卷
基金
中国国家自然科学基金;
关键词
Cu(100) facet; Grain boundary; CO2; electroreduction; C2+ products; Tandem catalysis; ELECTROCHEMICAL REDUCTION; CARBON-DIOXIDE; SURFACES; CAPTURE;
D O I
10.1016/j.jechem.2022.02.050
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Copper (Cu) is a special electrocatalyst for CO2 reduction reaction (CO2RR) to multi-carbon products. Experimentally introducing grain boundaries (GBs) into Cu-based catalysts is an efficient strategy to improve the selectivity of C2+ products. However, it is still elusive for the C2+ product generation on Cu GBs due to the complex active sites. In this work, we found that the tandem catalysis pathway on adjacent active motifs of Cu GB is responsible for the enhanced activity for C2+ production by first principles calculations. By electronic structure analysis shows, the d-band center of GB site is close to the Fermi level than Cu(100) facet, the Cu atomic sites at grain boundary have shorter bond length and stronger bonding with *CO, which can enhance the adsorption of *CO at GB sites. Moreover, CO2 protonation is more favorable on the region III motif (0.84 eV) than at Cu(100) site (1.35 eV). Meanwhile, the region II motif also facilitate the C-C coupling (0.72 eV) compared to the Cu(100) motif (1.09 eV). Therefore, the region III and II motifs form a tandem catalysis pathway, which promotes the C2+ selectivity on Cu GBs. This work provides new insights into CO2RR process. (C) 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by ELSEVIER B.V. and Science Press. All rights reserved.
引用
收藏
页码:219 / 223
页数:5
相关论文
共 32 条
[11]   Computational Comparison of Late Transition Metal (100) Surfaces for the Electrocatalytic Reduction of CO to C2 Species [J].
Hanselman, Selwyn ;
Koper, Marc T. M. ;
Calle-Vallejo, Federico .
ACS ENERGY LETTERS, 2018, 3 (05) :1062-1067
[12]  
Hart E. W., 1972, NATURE BEHAV GRAIN B, P155, DOI DOI 10.1007/978-1-4757-0181-4_6
[13]   Electrochemical Reduction of CO2 Using Copper Single-Crystal Surfaces: Effects of CO* Coverage on the Selective Formation of Ethylene [J].
Huang, Yun ;
Handoko, Albertus D. ;
Hirunsit, Pussana ;
Yeo, Boon Siang .
ACS CATALYSIS, 2017, 7 (03) :1749-1756
[14]   Structure sensitivity and nanoscale effects in electrocatalysis [J].
Koper, Marc T. M. .
NANOSCALE, 2011, 3 (05) :2054-2073
[15]  
Kresse G., 1993, PHYS REV B, V47, P558
[16]  
Kresse G., 1996, Phys. Rev. B, V54, P11169, DOI DOI 10.1103/PHYSREVB.54.11169
[17]   Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper [J].
Li, Christina W. ;
Ciston, Jim ;
Kanan, Matthew W. .
NATURE, 2014, 508 (7497) :504-+
[18]   Bond-Making and Breaking between Carbon, Nitrogen, and Oxygen in Electrocatalysis [J].
Li, Hongjiao ;
Li, Yongdan ;
Koper, Marc T. M. ;
Calle-Vallejo, Federico .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (44) :15694-15701
[19]   Quantum-Dot-Derived Catalysts for CO2 Reduction Reaction [J].
Liu, Min ;
Liu, Mengxia ;
Wang, Xiaoming ;
Kozlov, Sergey M. ;
Cao, Zhen ;
De Luna, Phil ;
Li, Hongmei ;
Qiu, Xiaoqing ;
Liu, Kang ;
Hu, Junhua ;
Jia, Chuankun ;
Wang, Peng ;
Zhou, Huimin ;
He, Jun ;
Zhong, Miao ;
Lan, Xinzheng ;
Zhou, Yansong ;
Wang, Zhiqiang ;
Li, Jun ;
Seifitokaldani, Ali ;
Cao Thang Dinh ;
Liang, Hongyan ;
Zou, Chengqin ;
Zhang, Daliang ;
Yang, Yang ;
Chan, Ting-Shan ;
Han, Yu ;
Cavallo, Luigi ;
Sham, Tsun-Kong ;
Hwang, Bing-Joe ;
Sargent, Edward H. .
JOULE, 2019, 3 (07) :1703-1718
[20]   Facet Dependence of CO2 Reduction Paths on Cu Electrodes [J].
Luo, Wenjia ;
Nie, Xiaowa ;
Janik, Michael J. ;
Asthagiri, Aravind .
ACS CATALYSIS, 2016, 6 (01) :219-229