Towards Trustworthy AI in Dentistry

被引:33
作者
Ma, J. [1 ]
Schneider, L. [2 ,3 ]
Lapuschkin, S. [1 ]
Achtibat, R. [1 ]
Duchrau, M. [2 ]
Krois, J. [2 ,3 ]
Schwendicke, F. [2 ,3 ]
Samek, W. [1 ,4 ]
机构
[1] Fraunhofer Heinrich Hertz Inst, Dept Artificial Intelligence, Berlin, Germany
[2] Charite, Dept Oral Diagnost Digital Hlth & Hlth Serv Res, Assmannshauser Str 4-6, D-14197 Berlin, Germany
[3] ITU WHO Focus Grp AI Hlth, Top Grp Dent Diagnost & Digital Dent, Geneva, Switzerland
[4] BIFOLD Berlin Inst Fdn Learning & Data, Berlin, Germany
关键词
computer vision; convolutional neural networks; artificial intelligence; deep learning; machine learning; dental informatics; bioinformatics; mathematical modeling; standardization;
D O I
10.1177/00220345221106086
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Medical and dental artificial intelligence (AI) require the trust of both users and recipients of the AI to enhance implementation, acceptability, reach, and maintenance. Standardization is one strategy to generate such trust, with quality standards pushing for improvements in AI and reliable quality in a number of attributes. In the present brief review, we summarize ongoing activities from research and standardization that contribute to the trustworthiness of medical and, specifically, dental AI and discuss the role of standardization and some of its key elements. Furthermore, we discuss how explainable AI methods can support the development of trustworthy AI models in dentistry. In particular, we demonstrate the practical benefits of using explainable AI on the use case of caries prediction on near-infrared light transillumination images.
引用
收藏
页码:1263 / 1268
页数:6
相关论文
共 27 条
  • [1] Finding and removing Clever Hans: Using explanation methods to debug and improve deep models
    Anders, Christopher J.
    Weber, Leander
    Neumann, David
    Samek, Wojciech
    Mueller, Klaus-Robert
    Lapuschkin, Sebastian
    [J]. INFORMATION FUSION, 2022, 77 : 261 - 295
  • [2] On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation
    Bach, Sebastian
    Binder, Alexander
    Montavon, Gregoire
    Klauschen, Frederick
    Mueller, Klaus-Robert
    Samek, Wojciech
    [J]. PLOS ONE, 2015, 10 (07):
  • [3] Baehrens D, 2010, J MACH LEARN RES, V11, P1803
  • [4] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [5] DIN EN., 2016, 62304201610 DIN EN
  • [6] Deep Learning for the Radiographic Detection of Apical Lesions
    Ekert, Thomas
    Krois, Joachim
    Meinhold, Leonie
    Elhennawy, Karim
    Emara, Ramy
    Golla, Tatiana
    Schwendicke, Falk
    [J]. JOURNAL OF ENDODONTICS, 2019, 45 (07) : 917 - 922
  • [7] European Commission, 2021, Proposal for a regulation of the european parliament and of the council laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts
  • [8] European Commission Directorate-General for Communications Networks Content and Technology, 2019, ETHICS GUIDELINES TR, DOI [10.2759/346720, DOI 10.2759/346720]
  • [9] Holzinger A., INT WORKSHOP EXTENDI, P3, DOI [10.1007/978-3-031-04083-2_1, DOI 10.1007/978-3-031-04083-2_1]
  • [10] International Organization for Standardization (ISO), 2020, 240282020 ISOIEC TR