Morphology and surface chemistry engineering toward pH-universal catalysts for hydrogen evolution at high current density

被引:611
作者
Luo, Yuting [1 ]
Tang, Lei [1 ]
Khan, Usman [1 ]
Yu, Qiangmin [1 ]
Cheng, Hui-Ming [1 ,2 ]
Zou, Xiaolong [1 ]
Liu, Bilu [1 ]
机构
[1] Tsinghua Univ, Shenzhen Geim Graphene Ctr SGC, TBSI, Shenzhen 518055, Peoples R China
[2] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
TOTAL-ENERGY CALCULATIONS; OXYGEN REDUCTION; DOPED CARBON; MOS2; EFFICIENT; ALKALINE; ELECTROCATALYST; FABRICATION; NANOSHEETS; CARBIDE;
D O I
10.1038/s41467-018-07792-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Large-scale implementation of electrochemical hydrogen production requires several fundamental issues to be solved, including understanding the mechanism and developing inexpensive electrocatalysts that work well at high current densities. Here we address these challenges by exploring the roles of morphology and surface chemistry, and develop inexpensive and efficient electrocatalysts for hydrogen evolution. Three model electrocatalysts are flat platinum foil, molybdenum disulfide microspheres, and molybdenum disulfide microspheres modified by molybdenum carbide nanoparticles. The last catalyst is highly active for hydrogen evolution independent of pH, with low overpotentials of 227 mV in acidic medium and 220 mV in alkaline medium at a high current density of 1000 mA cm(-2), because of enhanced transfer of mass (reactants and hydrogen bubbles) and fast reaction kinetics due to surface oxygen groups formed on molybdenum carbide during hydrogen evolution. Our work may guide rational design of electrocatalysts that work well at high current densities.
引用
收藏
页数:9
相关论文
共 51 条
[1]  
Azimi G, 2013, NAT MATER, V12, P315, DOI [10.1038/NMAT3545, 10.1038/nmat3545]
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Highly Active, Nonprecious Electrocatalyst Comprising Borophene Subunits for the Hydrogen Evolution Reaction [J].
Chen, Yanli ;
Yu, Guangtao ;
Chen, Wei ;
Liu, Yipu ;
Li, Guo-Dong ;
Zhu, Pinwen ;
Tao, Qiang ;
Li, Qiuju ;
Liu, Jingwei ;
Shen, Xiaopeng ;
Li, Hui ;
Huang, Xuri ;
Wang, Dejun ;
Asefa, Tewodros ;
Zou, Xiaoxin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (36) :12370-12373
[4]   Self-Templated Fabrication of MoNi4/MoO3-X Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution [J].
Chen, Yu-Yun ;
Zhang, Yun ;
Zhang, Xing ;
Tang, Tang ;
Luo, Hao ;
Niu, Shuai ;
Dai, Zhi-Hui ;
Wan, Li-Jun ;
Hu, Jin-Song .
ADVANCED MATERIALS, 2017, 29 (39)
[5]   DETERMINATION OF ADSORPTION OF OPD H SPECIES IN THE CATHODIC HYDROGEN EVOLUTION REACTION AT PT IN RELATION TO ELECTROCATALYSIS [J].
CONWAY, BE ;
BAI, L .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 198 (01) :149-175
[6]   H-2 EVOLUTION KINETICS AT HIGH-ACTIVITY NI-MO-CD ELECTROCOATED CATHODES AND ITS RELATION TO POTENTIAL DEPENDENCE OF SORPTION OF H [J].
CONWAY, BE ;
BAI, L .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 1986, 11 (08) :533-540
[7]   Enhancing the Alkaline Hydrogen Evolution Reaction Activity through the Bifunctionality of Ni(OH)2/Metal Catalysts [J].
Danilovic, N. ;
Subbaraman, Ram ;
Strmcnik, D. ;
Chang, Kee-Chul ;
Paulikas, A. P. ;
Stamenkovic, V. R. ;
Markovic, Nenad M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (50) :12495-12498
[8]   Influence of the Oxide Content in the Catalytic Power of Raney Nickel in Hydrogen Generation [J].
Delgado, Dario ;
Minakshi, Manickam ;
Kim, Dong-Jin ;
Kyeong W, Chung .
ANALYTICAL LETTERS, 2017, 50 (15) :2386-2401
[9]   Surface characterization study of Au/alpha-Fe2O3 and Au/Co3O4 low-temperature CO oxidation catalysts [J].
Epling, WS ;
Hoflund, GB ;
Weaver, JF ;
Tsubota, S ;
Haruta, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (23) :9929-9934
[10]   Low-Cost Hydrogen-Evolution Catalysts Based on Monolayer Platinum on Tungsten Monocarbide Substrates [J].
Esposito, Daniel V. ;
Hunt, Sean T. ;
Stottlemyer, Alan L. ;
Dobson, Kevin D. ;
McCandless, Brian E. ;
Birkmire, Robert W. ;
Chen, Jingguang G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) :9859-9862