An evolutionary strategy for finding effective quantum 2-body Hamiltonians of p-body interacting systems

被引:8
作者
Acampora, G. [1 ]
Cataudella, V [1 ,2 ,3 ]
Hegde, P. R. [1 ]
Lucignano, P. [1 ]
Passarelli, G. [1 ,2 ]
Vitiello, A. [1 ]
机构
[1] Univ Napoli Federico II, Complesso Monte S Angelo, Dipartimento Fis E Pancini, Via Cinthia, I-80126 Naples, Italy
[2] Complesso Monte S Angelo, CNR SPIN, Via Cinthia, I-80126 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
Adiabatic quantum computation; Quantum annealing; p-spin model; Genetic algorithms; Graph embedding; GENETIC ALGORITHMS;
D O I
10.1007/s42484-019-00011-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Embedding p-body interacting models onto the 2-body networks implemented on commercial quantum annealers is a relevant issue. For highly interacting models, requiring a number of ancilla qubits, that can be sizable and make unfeasible (if not impossible) to simulate such systems. In this manuscript, we propose an alternative to minor embedding, developing a new approximate procedure based on genetic algorithms, allowing to decouple the p-body in terms of 2-body interactions. A set of preliminary numerical experiments demonstrates the feasibility of our approach for the ferromagnetic p-spin model and paves the way towards the application of evolutionary strategies to more complex quantum models.
引用
收藏
页码:113 / 122
页数:10
相关论文
共 30 条
[1]  
[Anonymous], 2019, ARXIV190306559
[2]   On quantum mean-field models and their quantum annealing [J].
Bapst, Victor ;
Semerjian, Guilhem .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,
[3]   Nonperturbative k-body to two-body commuting conversion Hamiltonians and embedding problem instances into Ising spins [J].
Biamonte, J. D. .
PHYSICAL REVIEW A, 2008, 77 (05)
[4]   Toric codes and quantum doubles from two-body Hamiltonians [J].
Brell, Courtney G. ;
Flammia, Steven T. ;
Bartlett, Stephen D. ;
Doherty, Andrew C. .
NEW JOURNAL OF PHYSICS, 2011, 13
[5]   Minor-embedding in adiabatic quantum computation: I. The parameter setting problem [J].
Choi, Vicky .
QUANTUM INFORMATION PROCESSING, 2008, 7 (05) :193-209
[6]   Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design [J].
Choi, Vicky .
QUANTUM INFORMATION PROCESSING, 2011, 10 (03) :343-353
[7]  
Cook S., 1971, P 3 ANN ACM S THEOR, P151, DOI DOI 10.1145/800157.805047
[8]   Focus on Shortcuts to Adiabaticity [J].
del Campo, Adolfo ;
Kim, Kihwan .
NEW JOURNAL OF PHYSICS, 2019, 21 (05)
[9]   RANDOM-ENERGY MODEL - AN EXACTLY SOLVABLE MODEL OF DISORDERED-SYSTEMS [J].
DERRIDA, B .
PHYSICAL REVIEW B, 1981, 24 (05) :2613-2626
[10]  
Farhi E., 2000, Quantum computation by adiabatic evolution