Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 46 条
  • [41] Incorporating non-genetic risk factors and behavioural modifications into risk prediction models for colorectal cancer
    Yarnall, Jane M.
    Crouch, Daniel J. M.
    Lewis, Cathryn M.
    CANCER EPIDEMIOLOGY, 2013, 37 (03) : 324 - 329
  • [42] Comparison of Single-Trait and Multi-Trait Genome-Wide Association Models and Inclusion of Correlated Traits in the Dissection of the Genetic Architecture of a Complex Trait in a Breeding Program
    Merrick, Lance F.
    Burke, Adrienne B.
    Zhang, Zhiwu
    Carter, Arron H.
    FRONTIERS IN PLANT SCIENCE, 2022, 12
  • [43] Evaluation of non-additive genetic effects on carcass and meat quality traits in Korean Hanwoo cattle using genomic models
    Bhuiyan, M. S. A.
    Kim, Y. K.
    Lee, D. H.
    Chung, Y.
    Lee, D. J.
    Kang, J. M.
    Lee, S. H.
    ANIMAL, 2024, 18 (05)
  • [44] Comparison of non-linear models and genetic parameter estimation for growth curve traits in the Murciano-Granadina goat breed
    Mokhtari, M.
    Esmailizadeh, A.
    Mirmahmoudi, R.
    Gutierrez, J. P.
    Mohebbinejad, E.
    SMALL RUMINANT RESEARCH, 2023, 226
  • [45] mmGEBLUP: an advanced genomic prediction scheme for genetic improvement of complex traits in crops through integrative analysis of major genes, polygenes, and genotype-environment interactions
    Zhang, Qi-Xin
    Zhu, Tianneng
    Lin, Feng
    Fang, Dunhuang
    Chen, Xuejun
    Lou, Xiangyang
    Tong, Zhijun
    Xiao, Bingguang
    Xu, Hai-Ming
    BRIEFINGS IN BIOINFORMATICS, 2025, 26 (01)
  • [46] Effects of QTL parameters and marker density on efficiency of Haley-Knott regression interval mapping of QTL with complex traits and use of artificial neural network for prediction of the efficiency of HK method in livestock
    Nobari, K.
    Nassiry, M. R.
    Aslaminejad, A. A.
    Tahmoorespur, M.
    Esmailizadeh, A. K.
    JOURNAL OF APPLIED ANIMAL RESEARCH, 2012, 40 (03) : 247 - 255