Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 46 条
  • [31] Genetic analysis of production traits in turbot (Scophthalmus maximus) using random regression models based on molecular relatedness
    Schlicht, Kristina
    Krattenmacher, Nina
    Lugert, Vincent
    Schulz, Carsten
    Thaller, Georg
    Tetens, Jens
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2018, 135 (04) : 275 - 285
  • [32] Genomic prediction of fertility and calving traits in Holstein cattle based on models including epistatic genetic effects
    Alves, Kristen
    Brito, Luiz F.
    Schenkel, Flavio S.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (05) : 568 - 581
  • [33] A non-human primate system for large-scale genetic studies of complex traits
    Jasinska, Anna J.
    Lin, Michelle K.
    Service, Susan
    Choi, Oi-Wa
    DeYoung, Joseph
    Grujic, Olivera
    Kong, Sit-Yee
    Jung, Yoon
    Jorgensen, Mathew J.
    Fairbanks, Lynn A.
    Turner, Trudy
    Cantor, Rita M.
    Wasserscheid, Jessica
    Dewar, Ken
    Warren, Wesley
    Wilson, Richard K.
    Weinstock, George
    Jentsch, J. David
    Freimer, Nelson B.
    HUMAN MOLECULAR GENETICS, 2012, 21 (15) : 3307 - 3316
  • [34] Comparison between multiple-trait and random regression models for genetic evaluation of weight traits in Australian meat sheep
    Paneru, Uddhav
    Moghaddar, Nasir
    van der Werf, Julius
    JOURNAL OF ANIMAL SCIENCE, 2024, 102
  • [35] Genome-enabled prediction of indicator traits of resistance to gastrointestinal nematodes in sheep using parametric models and artificial neural networks
    Freitas, L. A.
    Savegnago, R. P.
    Alves, A. A. C.
    Stafuzza, N. B.
    Pedrosa, V. B.
    Rocha, R. A.
    Rosa, G. J. M.
    Paz, C. C. P.
    RESEARCH IN VETERINARY SCIENCE, 2024, 166
  • [36] Unveiling the Genetic Architecture of Semen Traits in Thai Native Roosters: A Comprehensive Analysis Using Random Regression and Spline Function Models
    Daryatmo, Iin Mulyawati
    Juiputta, Jiraporn
    Chankitisakul, Vibuntita
    Boonkum, Wuttigrai
    ANIMALS, 2024, 14 (19):
  • [37] Non-linear regression models for time to flowering in wild chickpea combine genetic and climatic factors
    Kozlov, Konstantin
    Singh, Anupam
    Berger, Jens
    Bishop-von Wettberg, Eric
    Kahraman, Abdullah
    Aydogan, Abdulkadir
    Cook, Douglas
    Nuzhdin, Sergey
    Samsonova, Maria
    BMC PLANT BIOLOGY, 2019, 19 (Suppl 2)
  • [38] Comparison of whole-genome prediction models for traits with contrasting genetic architecture in a diversity panel of maize inbred lines
    Riedelsheimer, Christian
    Technow, Frank
    Melchinger, Albrecht E.
    BMC GENOMICS, 2012, 13
  • [39] Genomic prediction based on data from three layer lines using non-linear regression models
    Huang, Heyun
    Windig, Jack J.
    Vereijken, Addie
    Calus, Mario P. L.
    GENETICS SELECTION EVOLUTION, 2014, 46
  • [40] Use of biological priors enhances understanding of genetic architecture and genomic prediction of complex traits within and between dairy cattle breeds
    Fang, Lingzhao
    Sahana, Goutam
    Ma, Peipei
    Su, Guosheng
    Yu, Ying
    Zhang, Shengli
    Lund, Mogens Sando
    Sorensen, Peter
    BMC GENOMICS, 2017, 18 : 604