Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 46 条
  • [21] Genetics of complex traits: prediction of phenotype, identification of causal polymorphisms and genetic architecture
    Goddard, M. E.
    Kemper, K. E.
    MacLeod, I. M.
    Chamberlain, A. J.
    Hayes, B. J.
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 283 (1835)
  • [22] Comparison of Non-parametric Bayesian Mixture Models for Syllable Clustering and Zero-Resource Speech Processing
    Seshadri, Shreyas
    Remes, Ulpu
    Rasanen, Okko
    18TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2017), VOLS 1-6: SITUATED INTERACTION, 2017, : 2744 - 2748
  • [23] Models for Estimating Genetic Parameters of Milk Production Traits Using Random Regression Models in Korean Holstein Cattle
    Cho, C. I.
    Alam, M.
    Choi, T. J.
    Choy, Y. H.
    Choi, J. G.
    Lee, S. S.
    Cho, K. H.
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2016, 29 (05): : 607 - 614
  • [24] Estimates of genetic parameters for growth traits in Brahman cattle using random regression and multitrait models
    Bertipaglia, T. S.
    Carreno, L. O. D.
    Aspilcueta-Borquis, R. R.
    Boligon, A. A.
    Farah, M. M.
    Gomes, F. J.
    Machado, C. H. C.
    Rey, F. S. B.
    da Fonseca, R.
    JOURNAL OF ANIMAL SCIENCE, 2015, 93 (08) : 3814 - 3819
  • [25] Leveraging Breeding Values Obtained from Random Regression Models for Genetic Inference of Longitudinal Traits
    Campbell, Malachy
    Momen, Mehdi
    Walia, Harkamal
    Morota, Gota
    PLANT GENOME, 2019, 12 (02)
  • [26] Genetic evaluation of growth traits of Santa Ines hair sheep using random regression models
    Sarmento, JLR
    Torres, RA
    Pereira, CS
    Sousa, WH
    Lopes, PS
    Araújo, CV
    Euclydes, RF
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2006, 58 (01) : 68 - 77
  • [27] Genetic Evaluation of Growth Traits in Nellore Cattle through Multi-trait and Random Regression Models
    Teixeira, Bruno Bastos
    Mota, Rodrigo Reis
    Lobo, Raysildo Barbosa
    da Silva, Luciano Pinheiro
    Souza Carneiro, Antonio Policarpo
    da Silva, Felipe Gomes
    Caetano, Giovani da Costa
    Fonseca e Silva, Fabyano
    CZECH JOURNAL OF ANIMAL SCIENCE, 2018, 63 (06) : 212 - 221
  • [28] Matrix models using fine size classes and their application to the population dynamics of tree species: Bayesian non-parametric estimation
    Shimatani, Ichiro K.
    Kubota, Yasuhiro
    Araki, Kiwako
    Aikawa, Shin-Ichi
    Manabe, Tohru
    PLANT SPECIES BIOLOGY, 2007, 22 (03) : 175 - 190
  • [29] K-NN FOREST: a software for the non-parametric prediction and mapping of environmental variables by the k-Nearest Neighbors algorithm
    Chirici, Gherardo
    Corona, Piermaria
    Marchetti, Marco
    Mastronardi, Alessandro
    Maselli, Fabio
    Bottai, Lorenzo
    Travaglini, Davide
    EUROPEAN JOURNAL OF REMOTE SENSING, 2012, 45 : 433 - 442
  • [30] RBF Neural Networks Modeling Methodology Compared to Non-Parametric Auto-Associative Models for Condition Monitoring Applications.
    Duarte Alves, Marco Aurelio
    Galotto Junior, Luigi
    Pereira Pinto, Joao Onofre
    Garcia, Raymundo Cordero
    Teixeira, Herbert
    Campos, Mario C. M.
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5406 - 5411