Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models

被引:82
|
作者
Zeng, Ping [1 ,2 ]
Zhou, Xiang [2 ,3 ]
机构
[1] Xuzhou Med Univ, Dept Epidemiol & Biostat, Xuzhou 221004, Jiangsu, Peoples R China
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Stat Genet, Ann Arbor, MI 48109 USA
基金
英国惠康基金; 美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; BAYESIAN VARIABLE SELECTION; VARIATIONAL INFERENCE; RISK PREDICTION; ACCURACY; LOCI; ARCHITECTURE; TRANSCRIPTOME; HERITABILITY; LIVESTOCK;
D O I
10.1038/s41467-017-00470-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Using genotype data to perform accurate genetic prediction of complex traits can facilitate genomic selection in animal and plant breeding programs, and can aid in the development of personalized medicine in humans. Because most complex traits have a polygenic architecture, accurate genetic prediction often requires modeling all genetic variants together via polygenic methods. Here, we develop such a polygenic method, which we refer to as the latent Dirichlet process regression model. Dirichlet process regression is non-parametric in nature, relies on the Dirichlet process to flexibly and adaptively model the effect size distribution, and thus enjoys robust prediction performance across a broad spectrum of genetic architectures. We compare Dirichlet process regression with several commonly used prediction methods with simulations. We further apply Dirichlet process regression to predict gene expressions, to conduct PrediXcan based gene set test, to perform genomic selection of four traits in two species, and to predict eight complex traits in a human cohort.
引用
收藏
页数:11
相关论文
共 46 条
  • [1] Integrative genetic risk prediction using non-parametric empirical Bayes classification
    Zhao, Sihai Dave
    BIOMETRICS, 2017, 73 (02) : 582 - 592
  • [2] Non-parametric Polygenic Risk Prediction via Partitioned GWAS Summary Statistics
    Chun, Sung
    Imakaev, Maxim
    Hui, Daniel
    Patsopoulos, Nikolaos A.
    Neale, Benjamin M.
    Kathiresan, Sekar
    Stitziel, Nathan O.
    Sunyaev, Shamil R.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2020, 107 (01) : 46 - 59
  • [3] A fast non-parametric test of association for multiple traits
    Garrido-Martin, Diego
    Calvo, Miquel
    Reverter, Ferran
    Guigo, Roderic
    GENOME BIOLOGY, 2023, 24 (01)
  • [4] Comparison of non-parametric methods in genomic evaluation of discrete traits
    Targhi, Mohammad Vahid Abolhassani
    Jafarabadi, Ghobad Asgari
    Aminafshar, Mehdi
    Kashan, Nasser Emam Jomeh
    GENE REPORTS, 2019, 15
  • [5] Genomic evaluation of threshold traits in different scenarios of threshold number using parametric and non-parametric statistical methods
    Ghasemi, M.
    Ghafouri-Kesbi, F.
    Zamani, P.
    JOURNAL OF AGRICULTURAL SCIENCE, 2023, 161 (01) : 109 - 116
  • [6] Regularized Machine Learning in the Genetic Prediction of Complex Traits
    Okser, Sebastian
    Pahikkala, Tapio
    Airola, Antti
    Salakoski, Tapio
    Ripatti, Samuli
    Aittokallio, Tero
    PLOS GENETICS, 2014, 10 (11):
  • [7] Genetic Prediction of Quantitative Lipid Traits: Comparing Shrinkage Models to Gene Scores
    Warren, Helen
    Casas, Juan-Pablo
    Hingorani, Aroon
    Dudbridge, Frank
    Whittaker, John
    GENETIC EPIDEMIOLOGY, 2014, 38 (01) : 72 - 83
  • [8] Improved genetic prediction of complex traits from individual-level data or summary statistics
    Zhang, Qianqian
    Prive, Florian
    Vilhjalmsson, Bjarni
    Speed, Doug
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [9] Simple, standardized incorporation of genetic risk into non-genetic risk prediction tools for complex traits: coronary heart disease as an example
    Goldstein, Benjamin A.
    Knowles, Joshua W.
    Salfati, Elias
    Ioannidis, John P. A.
    Assimes, Themistocles L.
    FRONTIERS IN GENETICS, 2014, 5
  • [10] Bayesian Polynomial Regression Models to Fit Multiple Genetic Models for Quantitative Traits
    Bae, Harold
    Perls, Thomas
    Steinberg, Martin
    Sebastiani, Paola
    BAYESIAN ANALYSIS, 2015, 10 (01): : 53 - 74