Integrating feature optimization using a dynamic convolutional neural network for chemical process supervised fault classification

被引:33
作者
Deng, Lu [1 ]
Zhang, Yang [2 ]
Dai, Yiyang [1 ]
Jia, Xu [1 ]
Zhou, Li [1 ]
Dang, Yagu [1 ]
机构
[1] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[2] Sichuan Univ, State Key Lab Biotherapy, Chengdu 610065, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Fault diagnosis; Deep learning; Genetic algorithm; Sequential optimization; Convolutional neural network; FEATURE-SELECTION; QUANTITATIVE MODEL; DIAGNOSIS; IDENTIFICATION;
D O I
10.1016/j.psep.2021.09.032
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chemical processes usually exhibit complex, high-dimensional, time-varying, and non-Gaussian char-acteristics, and the diagnosis of faults in chemical processes is particularly important. However, many current fault diagnosis methods do not consider the temporal correlation of process data, feature selection, and feature sequence arrangement. To solve this problem, this paper presents a fault diagnosis method using a dynamic convolutional neural network, based on a genetic algorithm (GA), for optimizing a feature sequence. First, the input data are transformed into a two-dimensional matrix by adding the dimension of time characteristics. Second, the GA is used to select the features, and the sequence of the selected features is optimized. Finally, the optimized feature sequence is input into the convolutional neural network (CNN) to obtain the final diagnosis results. The Tennessee Eastman chemical process is used for experimental analysis, and the proposed model is compared with the weighted cascade forest, deep belief network (DBN), optimized DBN, long short-term memory + CNN and feature selection using random forest models. The experimental results show that the proposed model has higher diagnostic accuracy. The average diagnosis rate of 20 faults is found to be 89.72%. (C) 2021 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 46 条
  • [21] Gradient-based learning applied to document recognition
    Lecun, Y
    Bottou, L
    Bengio, Y
    Haffner, P
    [J]. PROCEEDINGS OF THE IEEE, 1998, 86 (11) : 2278 - 2324
  • [22] Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
    Li, Chuan
    Sanchez, Rene-Vinicio
    Zurita, Grover
    Cerrada, Vlariela
    Cabrera, Diego
    Vasquez, Rafael E.
    [J]. NEUROCOMPUTING, 2015, 168 : 119 - 127
  • [23] Fault detection and diagnosis in process data using one-class support vector machines
    Mahadevan, Sankar
    Shah, Sirish L.
    [J]. JOURNAL OF PROCESS CONTROL, 2009, 19 (10) : 1627 - 1639
  • [24] A wrapper method for feature selection using Support Vector Machines
    Maldonado, Sebastian
    Weber, Richard
    [J]. INFORMATION SCIENCES, 2009, 179 (13) : 2208 - 2217
  • [25] PCA-based feature selection scheme for machine defect classification
    Malhi, A
    Gao, RX
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2004, 53 (06) : 1517 - 1525
  • [26] Genetic algorithm-based clustering technique
    Maulik, U
    Bandyopadhyay, S
    [J]. PATTERN RECOGNITION, 2000, 33 (09) : 1455 - 1465
  • [27] A novel one-dimensional convolutional neural network architecture for chemical process fault diagnosis
    Niu, Xin
    Yang, Xia
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2022, 100 (02) : 302 - 316
  • [28] A review of data-driven fault detection and diagnosis methods: applications in chemical process systems
    Nor, Norazwan Md
    Hassan, Che Rosmani Che
    Hussain, Mohd Azlan
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2020, 36 (04) : 513 - 553
  • [29] Artificial neural networks: applications in chemical engineering
    Pirdashti, Mohsen
    Curteanu, Silvia
    Kamangar, Mehrdad Hashemi
    Hassim, Mimi H.
    Khatami, Mohammad Amin
    [J]. REVIEWS IN CHEMICAL ENGINEERING, 2013, 29 (04) : 205 - 239
  • [30] Multi component fault diagnosis of rotational mechanical system based on decision tree and support vector machine
    Saimurugan, M.
    Ramachandran, K. I.
    Sugumaran, V.
    Sakthivel, N. R.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 3819 - 3826