Photonic Discrete-time Quantum Walks and Applications

被引:18
作者
Neves, Leonardo [1 ]
Puentes, Graciana [2 ,3 ]
机构
[1] Univ Fed Minas Gerais, Dept Fis, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, CONICET, Inst Fis Buenos Aires IFIBA, Ciudad Univ, RA-1428 Buenos Aires, DF, Argentina
关键词
quantum walks; spatial-multiplexing; time-multiplexing; spatial light modulators; PHASE; SIMULATION; HOLONOMY; STATES;
D O I
10.3390/e20100731
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a review of photonic implementations of discrete-time quantum walks (DTQW) in the spatial and temporal domains, based on spatial- and time-multiplexing techniques, respectively. Additionally, we propose a detailed novel scheme for photonic DTQW, using transverse spatial modes of single photons and programmable spatial light modulators (SLM) to manipulate them. Unlike all previous mode-multiplexed implementations, this scheme enables simulation of an arbitrary step of the walker, only limited, in principle, by the SLM resolution. We discuss current applications of such photonic DTQW architectures in quantum simulation of topological effects and the use of non-local coin operations based on two-photon hybrid entanglement.
引用
收藏
页数:17
相关论文
共 67 条
[1]   QUANTUM RANDOM-WALKS [J].
AHARONOV, Y ;
DAVIDOVICH, L ;
ZAGURY, N .
PHYSICAL REVIEW A, 1993, 48 (02) :1687-1690
[2]   Maximally entangled mixed-state generation via local operations [J].
Aiello, A. ;
Puentes, G. ;
Voigt, D. ;
Woerdman, J. P. .
PHYSICAL REVIEW A, 2007, 75 (06)
[3]   Symmetries, topological phases, and bound states in the one-dimensional quantum walk [J].
Asboth, J. K. .
PHYSICAL REVIEW B, 2012, 86 (19)
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/nphys2790, 10.1038/NPHYS2790]
[5]   A road to reality with topological superconductors [J].
Beenakker, Carlo ;
Kouwenhoven, Leo .
NATURE PHYSICS, 2016, 12 (07) :618-621
[6]   Quantum spin Hall effect and topological phase transition in HgTe quantum wells [J].
Bernevig, B. Andrei ;
Hughes, Taylor L. ;
Zhang, Shou-Cheng .
SCIENCE, 2006, 314 (5806) :1757-1761
[7]   CLASSICAL ADIABATIC ANGLES AND QUANTAL ADIABATIC PHASE [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (01) :15-27
[8]   Quantum communication through an unmodulated spin chain [J].
Bose, S .
PHYSICAL REVIEW LETTERS, 2003, 91 (20)
[9]   High-dimensional quantum cloning and applications to quantum hacking [J].
Bouchard, Frederic ;
Fickler, Robert ;
Boyd, Robert W. ;
Karimi, Ebrahim .
SCIENCE ADVANCES, 2017, 3 (02)
[10]   Discrete Single-Photon Quantum Walks with Tunable Decoherence [J].
Broome, M. A. ;
Fedrizzi, A. ;
Lanyon, B. P. ;
Kassal, I. ;
Aspuru-Guzik, A. ;
White, A. G. .
PHYSICAL REVIEW LETTERS, 2010, 104 (15)