Bound and Scattering State Solutions of the Klein-Gordon Equation with Deng-Fan Potential in Higher Dimensions

被引:7
|
作者
Ikot, A. N. [1 ]
Okorie, U. S. [1 ,6 ]
Rampho, G. J. [2 ]
Edet, C. O. [1 ]
Horchani, R. [3 ]
Abdel-aty, A. [4 ,5 ]
Alshehri, N. A. [7 ]
Elagan, S. K. [7 ]
机构
[1] Univ Port Harcourt, Dept Phys, Theoret Phys Grp, PMB 5323, Choba, Port Harcourt, Nigeria
[2] Univ South Africa, Dept Phys, ZA-1710 Johannesburg, South Africa
[3] Sultan Qaboos Univ, Coll Sci, Dept Phys, POB 36, Muscat 123, Oman
[4] Univ Bisha, Dept Phys, Coll Sci, POB 344, Bisha 61922, Saudi Arabia
[5] Al Azhar Univ, Fac Sci, Phys Dept, Assiut 71524, Egypt
[6] Akwa Ibom State Univ, Dept Phys, Ikot Akpaden, Uyo, Nigeria
[7] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, At Taif 21944, Saudi Arabia
关键词
SEPARABLE REPRESENTATION; SCHRODINGER-EQUATION; ALGEBRAIC APPROACH; ENERGIES; MODEL; PLUS;
D O I
10.1007/s00601-021-01693-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, the Klein-Gordon equation was solved with the Deng-Fan potential using the Nikiforov-Uvarov-functional-analysis in higher dimensions. By employing the improved Pekeris-type approximation scheme, the relativistic and nonrelativistic energy spectra of the Deng-Fan potential were obtained in closed form. In addition, the scattering state phase shift expression of Deng-Fan potential was obtained in higher dimensions. The effects of the vibrational and rotational quantum numbers on the vibrational energies and scattering phase shift of hydrogen chloride (HCl) and lithium hydride (LiH) diatomic molecules were studied numerically and graphically at different dimensions. Interestingly, there exists inter-dimensional degeneracy symmetry for the scattering phase shift of the diatomic molecular systems considered. Our results generally were in agreement with that obtained from literatures.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] The Klein-Gordon equation with the Kratzer potential in the noncommutative space
    Darroodi, M.
    Mehraban, H.
    Hassanabadi, S.
    MODERN PHYSICS LETTERS A, 2018, 33 (35)
  • [22] Bound and Scattering State of Position Dependent Mass Klein-Gordon Equation with Hulthen Plus Deformed-Type Hyperbolic Potential
    Ikot, A. N.
    Obong, H. P.
    Abbey, T. M.
    Zare, S.
    Ghafourian, M.
    Hassanabadi, H.
    FEW-BODY SYSTEMS, 2016, 57 (09) : 807 - 822
  • [23] Bound state solutions of the Klein-Gordon equation under a non-central potential: the Eckart plus a ring-shaped potential
    Ahmadov, A. I.
    Demirci, M.
    Mustamin, M. F.
    Orujova, M. Sh.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (01)
  • [24] Solutions of the Klein-Gordon equation with the improved Manning-Rosen potential energy model in D dimensions
    Chen, Xiao-Yu
    Chen, Tao
    Jia, Chun-Sheng
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (04): : 1 - 7
  • [25] Solutions of the Klein-Gordon equation with the improved Tietz potential energy model
    Liu, Han-Bin
    Yi, Liang-Zhong
    Jia, Chun-Sheng
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2018, 56 (10) : 2982 - 2994
  • [26] Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions
    Okorie, Uduakobong S.
    Ikot, Akpan N.
    Edet, C. O.
    Akpan, I. O.
    Sever, R.
    Rampho, R.
    JOURNAL OF PHYSICS COMMUNICATIONS, 2019, 3 (09):
  • [27] Scattering for the Mass-Critical Nonlinear Klein-Gordon Equations in Three and Higher Dimensions
    Cheng, Xing
    Guo, Zihua
    Masaki, Satoshi
    VIETNAM JOURNAL OF MATHEMATICS, 2023, 51 (04) : 869 - 909
  • [28] SCATTERING THRESHOLD FOR THE FOCUSING NONLINEAR KLEIN-GORDON EQUATION
    Ibrahim, Slim
    Masmoudi, Nader
    Nakanishi, Kenji
    ANALYSIS & PDE, 2011, 4 (03): : 405 - 460
  • [29] Scattering solutions and scattering function of a Klein-Gordon s-wave equation with jump conditions
    Tas, Halit
    Kucukevcilioglu, Yelda Aygar
    Bayram, Elgiz
    TURKISH JOURNAL OF MATHEMATICS, 2023, 47 (02) : 721 - 731
  • [30] Exact solutions of coupled nonlinear Klein-Gordon equation
    Shang, Desheng
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1577 - 1583