Further results on invariance of the eigenvalues of matrix products involving generalized inverses

被引:2
作者
Baksalary, JK [1 ]
Markiewicz, A [1 ]
机构
[1] ACAD AGR POZNAN,POZNAN,POLAND
关键词
D O I
10.1016/0024-3795(94)00001-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that if m x n, p x n, and p x m complex matrices A, B, and C do not satisfy at least one of the range inclusions R(A*C*) subset of or equal to R(B*) and R(CA) subset of or equal to R(B), then for each complex number there is a choice of a generalized inverse B- such that this number is an eigenvalue of the product AB(-)C. Combined with criteria derived by Baksalary and Puntanen (1990) and by Baksalary and Pukkila (1992), this result implies that the invariance of the magnitude-largest eigenvalue and/or the magnitude-smallest nonzero eigenvalue of AB(-)C with respect to the choice of B- is equivalent to the invariance of the set of all eigenvalues.
引用
收藏
页码:115 / 121
页数:7
相关论文
共 9 条
[1]  
Baksalary J.K., 1983, LINEAR MULTILINEAR A, V14, P89
[2]   RANK INVARIANCE CRITERION AND ITS APPLICATION TO THE UNIFIED THEORY OF LEAST-SQUARES [J].
BAKSALARY, JK ;
MATHEW, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 127 :393-401
[3]   SPECTRUM AND TRACE INVARIANCE CRITERION AND ITS STATISTICAL APPLICATIONS [J].
BAKSALARY, JK ;
PUNTANEN, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 142 :121-128
[4]  
BAKSALARY JK, 1992, LINEAR ALGEBRA APPL, V165, P121
[5]  
Carlson D., 1987, CURRENT TRENDS MATRI, P81
[6]   1-2 INVERSES AND INVARIANCE OF BA+C [J].
HARTWIG, RE .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 11 (03) :271-275
[7]  
Marsaglia G., 1974, LINEAR MULTILINEAR A, V2, P269, DOI DOI 10.1080/03081087408817070
[8]  
Rao C. R., 1971, GEN INVERSE MATRICES, V135, P197
[9]  
RAO CR, 1972, SANKHYA SER A, V34, P5