Influence of Synthesis Routes on the Crystallography, Morphology, and Electrochemistry of Li2MnO3

被引:22
作者
Menon, Ashok S. [1 ]
Ojwang, Dickson O. [1 ]
Willhammar, Tom [2 ]
Peterson, Vanessa K. [3 ,4 ]
Edstrom, Kristina [1 ]
Gomez, Cesar Pay [1 ]
Brant, William R. [1 ]
机构
[1] Uppsala Univ, Angstrom Lab, Dept Chem, SE-75121 Uppsala, Sweden
[2] Stockholm Univ, Dept Mat & Environm Chem, Inorgan & Struct Chem, SE-10691 Stockholm, Sweden
[3] Univ Wollongong, Fac Engn, Inst Superconducting & Elect Mat, Wollongong, NSW 2522, Australia
[4] Australian Nucl Sci & Technol Org, Australian Ctr Neutron Scattering, Kirrawee Dc 2232, Australia
基金
瑞典研究理事会;
关键词
Li-rich layered oxides; synthesis-property relationship; Li2MnO3; stacking faults; cathode materials;
D O I
10.1021/acsami.9b20754
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the potential of delivering reversible capacities of up to 300 mAh/g, Li-rich transition-metal oxides hold great promise as cathode materials for future Li-ion batteries. However, a cohesive synthesis-structure-electrochemistry relationship is still lacking for these materials, which impedes progress in the field. This work investigates how and why different synthesis routes, specifically solid-state and modified Pechini sol-gel methods, affect the properties of Li2MnO3, a compositionally simple member of this material system. Through a comprehensive investigation of the synthesis mechanism along with crystallographic, morphological, and electrochemical characterization, the effects of different synthesis routes were found to predominantly influence the degree of stacking faults and particle morphology. That is, the modified Pechini method produced isotropic spherical particles with approximately 57% faulting and the solid-state samples possessed heterogeneous morphology with approximately 43% faulting probability. Inevitably, these differences lead to variations in electrochemical performance. This study accentuates the importance of understanding how synthesis affects the electrochemistry of these materials, which is critical considering the crystallographic and electrochemical complexities of the class of materials more generally. The methodology employed here is extendable to studying synthesis-property relationships of other compositionally complex Li-rich layered oxide systems.
引用
收藏
页码:5939 / 5950
页数:12
相关论文
共 62 条
  • [1] Pan H., Zhang S., Chen J., Gao M., Liu Y., Zhu T., Jiang Y., Li- And Mn-Rich Layered Oxide Cathode Materials for Lithium-Ion Batteries: A Review from Fundamentals to Research Progress and Applications, Mol. Syst. Des. Eng., 3, pp. 748-803, (2018)
  • [2] Rozier P., Tarascon J.M., Review - Li-Rich Layered Oxide Cathodes for Next-Generation Li-Ion Batteries: Chances and Challenges, J. Electrochem. Soc., 162, pp. A2490-A2499, (2015)
  • [3] Thackeray M.M., Kang S.-H., Johnson C.S., Vaughey J.T., Benedek R., Hackney S.A., Li<sub>2</sub>MnO<sub>3</sub>-stabilized LiMO<sub>2</sub> (M = Mn, Ni, Co) electrodes for lithium-ion batteries, J. Mater. Chem., 17, pp. 3112-3125, (2007)
  • [4] Li B., Xia D., Anionic Redox in Rechargeable Lithium Batteries, Adv. Mater., 29, (2017)
  • [5] Sathiya M., Rousse G., Ramesha K., Laisa C.P., Vezin H., Sougrati M.T., Doublet M.L., Foix D., Gonbeau D., Walker W., Prakash A.S., Ben Hassine M., Dupont L., Tarascon J.M., Reversible anionic Redox chemistry in High-Capacity Layered-Oxide Electrodes, Nat. Mater., 12, pp. 827-835, (2013)
  • [6] Assat G., Tarascon J.-M., Fundamental Understanding and Practical Challenges of Anionic Redox Activity in Li-Ion Batteries, Nat. Energy, 3, pp. 373-386, (2018)
  • [7] Hu E., Yu X., Lin R., Bi X., Lu J., Bak S., Nam K.-W., Xin H.L., Jaye C., Fischer D.A., Amine K., Yang X.-Q., Evolution of redox couples in Li- And Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release, Nat. Energy, 3, pp. 690-698, (2018)
  • [8] Xu J., Sun M., Qiao R., Renfrew S.E., Ma L., Wu T., Hwang S., Nordlund D., Su D., Amine K., Lu J., McCloskey B.D., Yang W., Tong W., Elucidating Anionic Oxygen Activity in Lithium-Rich Layered Oxides, Nat. Commun., 9, (2018)
  • [9] Ben Yahia M., Vergnet J., Saubanere M., Doublet M.-L., Unified Picture of Anionic Redox in Li/Na-ion Batteries, Nat. Mater., 18, pp. 496-502, (2019)
  • [10] Li B., Shao R., Yan H., An L., Zhang B., Wei H., Ma J., Xia D., Han X., Understanding the Stability for Li-Rich Layered Oxide Li<sub>2</sub>RuO<sub>3</sub> Cathode, Adv. Funct. Mater., 26, pp. 1330-1337, (2016)