Smart hypoxia-responsive transformable and charge-reversible nanoparticles for the deep penetration and tumor microenvironment modulation of pancreatic cancer

被引:57
作者
Chen, Hongyi
Guo, Qin
Chu, Yongchao
Li, Chao
Zhang, Yiwen
Liu, Peixin
Zhao, Zhenhao
Wang, Yu
Luo, Yifan
Zhou, Zheng
Zhang, Tongyu
Song, Haolin
Li, Xuwen
Li, Chufeng
Su, Boyu
You, Haoyu
Sun, Tao
Jiang, Chen [1 ]
机构
[1] Fudan Univ, Key Lab Smart Drug Delivery, State Key Lab Med Neurobiol, Dept Pharmaceut,Sch Pharm,Inst Brain Sci,Minist Ed, Shanghai 201203, Peoples R China
基金
中国国家自然科学基金;
关键词
Hypoxia-responsive; Sizereduction; Chargereversal; Deeppenetration; TMEmodulation; DRUG-DELIVERY; STRATEGIES; RESISTANCE; CYTOKINES; ANTIBODY; BARRIERS; CELLS; SIZE;
D O I
10.1016/j.biomaterials.2022.121599
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The compact extracellular matrix (ECM) of pancreatic ductal adenocarcinoma (PDAC) is the major physical barrier that hinders the delivery of anti-tumor drugs, leading to strong inherent chemotherapy resistance as well as establishing an immunosuppressive tumor microenvironment (TME). However, forcibly destroying the stroma barrier would break the balance of delicate signal transduction and dependence between tumor cells and matrix components. Uncontrollable growth and metastasis would occur, making PDAC more difficult to control. Hence, we design and construct an aptamer-decorated hypoxia-responsive nanoparticle s(DGL)(n)@Apt co-loading gemcitabine monophosphate and STAT3 inhibitor HJC0152. This nanoparticle can reverse its surficial charge in the TME, and reduce the size triggered by hypoxia. The released ultra-small DGL particles loading gemcitabine monophosphate exhibit excellent deep-tumor penetration, chemotherapy drugs endocytosis promotion, and autophagy induction ability. Meanwhile, HJC0152 inhibits overactivated STAT3 in both tumor cells and tumor stroma, softens the stroma barrier, and reeducates the TME into an immune-activated state. This smart code -livery strategy provides an inspiring opportunity in PDAC treatment.
引用
收藏
页数:15
相关论文
共 49 条
[1]   Pancreatic Cancer Chemoresistance to Gemcitabine [J].
Amrutkar, Manoj ;
Gladhaug, Ivar P. .
CANCERS, 2017, 9 (11)
[2]   Chemotherapy and Tumor Evolution Shape Pancreatic Cancer Recurrence after Resection [J].
Bednar, Filip ;
di Magliano, Marina Pasca .
CANCER DISCOVERY, 2020, 10 (06) :762-764
[3]   Gemcitabine resistance in pancreatic ductal adenocarcinoma [J].
Binenbaum, Yoav ;
Na'ara, Shorook ;
Gil, Ziv .
DRUG RESISTANCE UPDATES, 2015, 23 :55-68
[4]   PD-1 up-regulation on CD4+ T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production [J].
Celada, Lindsay J. ;
Kropski, Jonathan A. ;
Herazo-Maya, Jose D. ;
Luo, Weifeng ;
Creecy, Amy ;
Abad, Andrew T. ;
Chioma, Ozioma S. ;
Lee, Grace ;
Hassell, Natalie E. ;
Shaginurova, Guzel, I ;
Wang, Yufen ;
Johnson, Joyce E. ;
Kerrigan, Amy ;
Mason, Wendi R. ;
Baughman, Robert P. ;
Ayers, Gregory D. ;
Bernard, Gordon R. ;
Culver, Daniel A. ;
Montgomery, Courtney G. ;
Maher, Toby M. ;
Molyneaux, Philip L. ;
Noth, Imre ;
Mutsaers, Steven E. ;
Prele, Cecilia M. ;
Peebles, R. Stokes, Jr. ;
Newcomb, Dawn C. ;
Kaminski, Naftali ;
Blackwell, Timothy S. ;
Van Kaer, Luc ;
Drake, Wonder P. .
SCIENCE TRANSLATIONAL MEDICINE, 2018, 10 (460)
[5]   Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis [J].
Chakraborty, Debomita ;
Sumova, Barbora ;
Mallano, Tatjana ;
Chen, Chih-Wei ;
Distler, Alfiya ;
Bergmann, Christina ;
Ludolph, Ingo ;
Horch, Raymund E. ;
Gelse, Kolja ;
Ramming, Andreas ;
Distler, Oliver ;
Schett, Georg ;
Senolt, Ladislav ;
Distler, Jorg H. W. .
NATURE COMMUNICATIONS, 2017, 8
[6]   Codelivery Nanosystem Targeting the Deep Microenvironment of Pancreatic Cancer [J].
Chen, Xinli ;
Zhou, Wenxi ;
Liang, Chen ;
Shi, Si ;
Yu, Xianjun ;
Chen, Qinjun ;
Sun, Tao ;
Lu, Yifei ;
Zhang, Yujie ;
Guo, Qin ;
Li, Chao ;
Zhang, Yu ;
Jiang, Chen .
NANO LETTERS, 2019, 19 (06) :3527-3534
[7]   Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein [J].
Dai, Enyong ;
Han, Leng ;
Liu, Jiao ;
Xie, Yangchun ;
Kroemer, Guido ;
Klionsky, Daniel J. ;
Zeh, Herbert J. ;
Kang, Rui ;
Wang, Jing ;
Tang, Daolin .
AUTOPHAGY, 2020, 16 (11) :2069-2083
[8]   Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer [J].
Dalby, Kevin N. ;
Tekedereli, Ibrahim ;
Lopez-Berestein, Gabriel ;
Ozpolat, Bulent .
AUTOPHAGY, 2010, 6 (03) :322-329
[9]   A zeta potential value determines the aggregate's size of penta-substituted [60]fullerene derivatives in aqueous suspension whereas positive charge is required for toxicity against bacterial cells [J].
Deryabin, Dmitry G. ;
Efremova, Ludmila V. ;
Vasilchenko, Alexey S. ;
Saidakova, Evgeniya V. ;
Sizova, Elena A. ;
Troshin, Pavel A. ;
Zhilenkov, Alexander V. ;
Khakina, Ekaterina E. .
JOURNAL OF NANOBIOTECHNOLOGY, 2015, 13
[10]   Single-Cell RNA Sequencing Reveals Stromal Evolution into LRRC15+ Myofibroblasts as a Determinant of Patient Response to Cancer Immunotherapy [J].
Dominguez, Claudia X. ;
Mueller, Soren ;
Keerthivasan, Shilpa ;
Koeppen, Hartmut ;
Hung, Jeffrey ;
Gierke, Sarah ;
Breart, Beatrice ;
Foreman, Oded ;
Bainbridge, Travis W. ;
Castiglioni, Alessandra ;
Senbabaoglu, Yasin ;
Modrusan, Zora ;
Liang, Yuxin ;
Junttila, Melissa R. ;
Klijn, Christiaan ;
Bourgon, Richard ;
Turley, Shannon J. .
CANCER DISCOVERY, 2020, 10 (02) :232-253