Application of machine learning to hyperspectral radiative transfer simulations

被引:22
作者
Le, Tianhao [1 ]
Liu, Chao [2 ]
Yao, Bin [2 ]
Natraj, Vijay [3 ]
Yung, Yuk L. [1 ]
机构
[1] CALTECH, Div Geol & Planetary Sci, Pasadena, CA 91125 USA
[2] Nanjing Univ Informat Sci & Technol, Sch Atmospher Phys, Key Lab Aerosol Cloud Precipitat China Meteorol A, Nanjing 210044, Peoples R China
[3] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
基金
中国国家自然科学基金; 美国国家航空航天局;
关键词
Radiative transfer; Hyperspectral; Machine learning; Principal component analysis; TRANSFER MODEL; ABSORPTION; PREDICTION; O-2;
D O I
10.1016/j.jqsrt.2020.106928
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Hyperspectral observations have become one of the most popular and powerful methods for atmospheric remote sensing, and are widely used for temperature, gas, aerosol, and cloud retrievals. However, accurate forward radiative transfer simulations are computationally expensive since typical line-by-line approaches involve a large number of monochromatic radiative transfer calculations. This study explores the feasibility of machine learning techniques (using neural network (NN) as an example) for fast hyperspectral radiative transfer simulations, by performing calculations at a small fraction of hyperspectral wavelengths and extending them across the entire spectral range. Results from the NN model are compared with those from a principal component analysis (PCA) model, which uses a similar principle of dimensionality reduction. We consider hyperspectral radiances from both actual satellite observations and accurate line-by-line simulations. The NN model can alleviate the computational burden by two to three orders of magnitude, and generate radiances with small relative errors (generally less than 0.5% compared to exact calculations); the performance of the NN model is better than that of the PCA model. The model can be further improved by optimizing the training procedure and parameters, the representative wavelengths, and the machine learning technique itself. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 54 条
[41]   Linearization of the Principal Component Analysis method for radiative transfer acceleration: Application to retrieval algorithms and sensitivity studies [J].
Spurr, R. ;
Natraj, V. ;
Lerot, C. ;
Van Roozendael, M. ;
Loyola, D. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 125 :1-17
[42]   A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval [J].
Spurr, RJD ;
Kurosu, TP ;
Chance, KV .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2001, 68 (06) :689-735
[43]  
Spurr RJD, 2017, PRINCIPAL COMPONENT
[44]   Big data: the end of the scientific method? [J].
Succi, Sauro ;
Coveney, Peter V. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2019, 377 (2142)
[45]   Estimation of solar radiation using a neural network based on radiative transfer [J].
Takenaka, Hideaki ;
Nakajima, Takashi Y. ;
Higurashi, Akiko ;
Higuchi, Atsushi ;
Takamura, Tamio ;
Pinker, Rachiel T. ;
Nakajima, Teruyuki .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[46]  
Tayor M, 2016, J QUANT SPECTROSC RA, V168, P176
[47]   TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications [J].
Veefkind, J. P. ;
Aben, I. ;
McMullan, K. ;
Forster, H. ;
de Vries, J. ;
Otter, G. ;
Claas, J. ;
Eskes, H. J. ;
de Haan, J. F. ;
Kleipool, Q. ;
van Weele, M. ;
Hasekamp, O. ;
Hoogeveen, R. ;
Landgraf, J. ;
Snel, R. ;
Tol, P. ;
Ingmann, P. ;
Voors, R. ;
Kruizinga, B. ;
Vink, R. ;
Visser, H. ;
Levelt, P. F. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :70-83
[48]   A High-Spectral-Resolution Radiative Transfer Model for Simulating Multi layered Clouds and Aerosols in the Infrared Spectral Region [J].
Wang, Chenxi ;
Yang, Ping ;
Liu, Xu .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (02) :926-942
[49]   Advanced Radiative Transfer Modeling System (ARMS): A New-Generation Satellite Observation Operator Developed for Numerical Weather Prediction and Remote Sensing Applications [J].
Weng, Fuzhong ;
Yu, Xinwen ;
Duan, Yihong ;
Yang, Jun ;
Wang, Jianjie .
ADVANCES IN ATMOSPHERIC SCIENCES, 2020, 37 (02) :131-136
[50]   The Total Carbon Column Observing Network [J].
Wunch, Debra ;
Toon, Geoffrey C. ;
Blavier, Jean-Francois L. ;
Washenfelder, Rebecca A. ;
Notholt, Justus ;
Connor, Brian J. ;
Griffith, David W. T. ;
Sherlock, Vanessa ;
Wennberg, Paul O. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 369 (1943) :2087-2112