Five families of the narrow-sense primitive BCH codes over finite fields

被引:7
|
作者
Pang, Binbin [1 ,2 ]
Zhu, Shixin [1 ,2 ]
Kai, Xiaoshan [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Intelligent Interconnected Syst Lab Anhui Prov, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Narrow-sense primitive BCH code; Bose distance; Cyclotomic coset; MINIMUM DISTANCE; WEIGHT; BOSE;
D O I
10.1007/s10623-021-00942-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is an interesting problem to determine the parameters of BCH codes, due to their wide applications. In this paper, we determine the dimension and the Bose distance of five families of the narrow-sense primitive BCH codes with the following designed distances: 1. delta((a,b)) = aq(m)-1/q-1 + bq(m)-1/q2-1, where is even, 0 <= a <= q - 1, 1 <= b <= q - 1, 1 <= a + b <= q - 1 (2). (delta) over tilde ((a,b)) = aq(m-1) + (a + b)q(m-2) - 1, where is even, 0 <= a <= q-1, 1 <= b <= q-1, 1 <= a+b <= q-1. 3. delta((a,c)) = aq(m)-1/q-1 + cq(m-1)-1/q-1, where m >= 2, 0 <= a <= q-1, 1 <= c <= q-1, 1 <= a + c <= q-1. 4. delta((a,t))'=aq(m)-1/q-1 + q(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-2, a + 2 <= t <= q-1. 5. delta((a,c,t))''=aq(m)-1/q-1 + cq(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-3, 2 <= c <= q-, 1 <= a+c <= q-1, 1 <= t <= c-1. Moreover, we obtain the exact parameters of two subfamilies of BCH codes with designed distances (delta) over bar = bq(m)-1/q(2)-1 and delta(a,t)=(at+1)qm-1t(q-1) with even m, 1 <= a <= [q-2/t], 1 <= b <= q - 1, t>1 and t vertical bar(q +1). Note that we get the narrow-sense primitive BCH codes with flexible designed distance as to a, b, c, t. Finally, we obtain a lot of the optimal or the best narrow-sense primitive BCH codes.
引用
收藏
页码:2679 / 2696
页数:18
相关论文
共 30 条
  • [21] A new construction of quantum codes from quasi-cyclic codes over finite fields
    Soumak Biswas
    Maheshanand Bhaintwal
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 375 - 388
  • [22] A new construction of quantum codes from quasi-cyclic codes over finite fields
    Biswas, Soumak
    Bhaintwal, Maheshanand
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02) : 375 - 388
  • [23] On symbol-pair weight distribution of MDS codes and simplex codes over finite fields
    Junru Ma
    Jinquan Luo
    Cryptography and Communications, 2021, 13 : 101 - 115
  • [24] Algebraic methods for parameterized codes and invariants of vanishing ideals over finite fields
    Renteria-Marquez, Carlos
    Simis, Aron
    Villarreal, Rafael H.
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (01) : 81 - 104
  • [25] EXISTENCE CONDITIONS FOR SELF-ORTHOGONAL NEGACYCLIC CODES OVER FINITE FIELDS
    Lin, Liren
    Liu, Hongwei
    Chen, Bocong
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (01) : 1 - 7
  • [26] TWO CLASSES OF LDPC CODES FROM THE SPACE OF HERMITIAN MATRICES OVER FINITE FIELDS
    Zhao, Meng
    Ma, Changli
    Feng, Yanan
    Wang, Qi
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (04) : 1211 - 1222
  • [27] Constructing MDS Galois self-dual constacyclic codes over finite fields
    Mi, Jiafu
    Cao, Xiwang
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [28] Two constructions of LDPC codes based on pseudo-symplectic geometry over finite fields
    Wang Xiuli
    Hao Yakun
    TheJournalofChinaUniversitiesofPostsandTelecommunications, 2018, 25 (02) : 49 - 59
  • [29] Weight Distributions of Regular Low-Density Parity-Check Codes Over Finite Fields
    Yang, Shengtian
    Honold, Thomas
    Chen, Yan
    Zhang, Zhaoyang
    Qiu, Peiliang
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (11) : 7507 - 7521
  • [30] New Construction of Low-Density Parity-Check Codes Based on Vector Space Over Finite Fields
    Liu, Xuemei
    Jia, Lihua
    IEEE ACCESS, 2020, 8 : 203538 - 203542