Five families of the narrow-sense primitive BCH codes over finite fields

被引:7
|
作者
Pang, Binbin [1 ,2 ]
Zhu, Shixin [1 ,2 ]
Kai, Xiaoshan [1 ,2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Intelligent Interconnected Syst Lab Anhui Prov, Hefei, Peoples R China
基金
中国国家自然科学基金;
关键词
Narrow-sense primitive BCH code; Bose distance; Cyclotomic coset; MINIMUM DISTANCE; WEIGHT; BOSE;
D O I
10.1007/s10623-021-00942-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It is an interesting problem to determine the parameters of BCH codes, due to their wide applications. In this paper, we determine the dimension and the Bose distance of five families of the narrow-sense primitive BCH codes with the following designed distances: 1. delta((a,b)) = aq(m)-1/q-1 + bq(m)-1/q2-1, where is even, 0 <= a <= q - 1, 1 <= b <= q - 1, 1 <= a + b <= q - 1 (2). (delta) over tilde ((a,b)) = aq(m-1) + (a + b)q(m-2) - 1, where is even, 0 <= a <= q-1, 1 <= b <= q-1, 1 <= a+b <= q-1. 3. delta((a,c)) = aq(m)-1/q-1 + cq(m-1)-1/q-1, where m >= 2, 0 <= a <= q-1, 1 <= c <= q-1, 1 <= a + c <= q-1. 4. delta((a,t))'=aq(m)-1/q-1 + q(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-2, a + 2 <= t <= q-1. 5. delta((a,c,t))''=aq(m)-1/q-1 + cq(m-1)-1/q-1-t, where m >= 3, 0 <= a <= q-3, 2 <= c <= q-, 1 <= a+c <= q-1, 1 <= t <= c-1. Moreover, we obtain the exact parameters of two subfamilies of BCH codes with designed distances (delta) over bar = bq(m)-1/q(2)-1 and delta(a,t)=(at+1)qm-1t(q-1) with even m, 1 <= a <= [q-2/t], 1 <= b <= q - 1, t>1 and t vertical bar(q +1). Note that we get the narrow-sense primitive BCH codes with flexible designed distance as to a, b, c, t. Finally, we obtain a lot of the optimal or the best narrow-sense primitive BCH codes.
引用
收藏
页码:2679 / 2696
页数:18
相关论文
共 30 条
  • [11] Narrow-Sense BCH Codes Over GF(q) With Length n = qm-1/q-1
    Li, Shuxing
    Ding, Cunsheng
    Xiong, Maosheng
    Ge, Gennian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (11) : 7219 - 7236
  • [12] Parameters and characterizations of hulls of some projective narrow-sense BCH codes
    Yuwen Huang
    Chengju Li
    Qi Wang
    Zongrun Du
    Designs, Codes and Cryptography, 2022, 90 : 87 - 106
  • [13] On Infinite Families of Narrow-Sense Antiprimitive BCH Codes Admitting 3-Transitive Automorphism Groups and Their Consequences
    Liu, Qi
    Ding, Cunsheng
    Mesnager, Sihem
    Tang, Chunming
    Tonchev, Vladimir D.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (05) : 3096 - 3107
  • [14] Two classes of LCD BCH codes over finite fields
    Fu, Yuqing
    Liu, Hongwei
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 99
  • [15] Designed distances and parameters of new LCD BCH codes over finite fields
    Li, Fengwei
    Yue, Qin
    Wu, Yansheng
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (01): : 147 - 163
  • [16] On the number of primitive polynomials over finite fields
    Chang, Y
    Chou, WS
    Shiue, PJS
    FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (01) : 156 - 163
  • [17] Galois LCD codes over finite fields
    Liu, Xiusheng
    Fan, Yun
    Liu, Hualu
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 49 : 227 - 242
  • [18] LCD Cyclic Codes Over Finite Fields
    Li, Chengju
    Ding, Cunsheng
    Li, Shuxing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4344 - 4356
  • [19] Cyclic Codes from A Sequence over Finite Fields
    Nopendri
    Alamsyah, Intan Muchtadi
    Suprijanto, Djoko
    Barra, Aleams
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (03): : 685 - 694
  • [20] LDPC Codes Based on the Space of Symmetric Matrices Over Finite Fields
    Ma, Changli
    Wang, Qi
    Zhao, Meng
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4332 - 4343