Polyadic random fields

被引:3
作者
Malyarenko, Anatoliy [1 ]
Ostoja-Starzewski, Martin [2 ,3 ]
机构
[1] Malardalen Univ, Div Math & Phys, Hogskoleplan 1,Box 883, S-72123 Vasteras, Sweden
[2] Univ Illinois, Dept Mech Sci & Engn, Inst Condensed Matter Theory, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 05期
关键词
Random field; Symmetry class; Polyadics; CLASSIFICATION;
D O I
10.1007/s00033-022-01842-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers mean-square continuous, wide-sense homogeneous, and isotropic random fields taking values in a linear space of polyadics. We find a set of such fields whose values are symmetric and positive-definite dyadics, and outline a strategy for their simulation.
引用
收藏
页数:21
相关论文
共 29 条
[1]  
[Anonymous], 1997, Convex Analysis
[2]   Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity [J].
Auffray, N. ;
He, Q. C. ;
Le Quang, H. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 159 :197-210
[3]  
Bredon G. E., 1972, Introduction to Compact Transformation Groups
[4]  
Drew TB, 1961, HDB VECTOR POLYADIC
[5]  
Gaunt J. A., 1929, Proceedings of the Royal Society A, V122, P513, DOI DOI 10.1098/RSPA.1929.0037
[6]  
Gibbs JW., 1961, SCI PAPERS J WILLARD
[7]  
Godunov S. K., 2004, SIB MAT ZH, V45, P540, DOI DOI 10.1023/B:SIMJ.0000028609.97557.B8
[8]  
Golubitsky M., 1988, Singularities and Groups in Bifurcation Theory, VII
[9]  
Herman B., 1945, Comptes Rendus (Doklady) Acad. Sci. URSS, V48, P89
[10]  
Hofmann K.H., 2020, STRUCTURE COMPACT GR, V25