Polyadic random fields

被引:3
作者
Malyarenko, Anatoliy [1 ]
Ostoja-Starzewski, Martin [2 ,3 ]
机构
[1] Malardalen Univ, Div Math & Phys, Hogskoleplan 1,Box 883, S-72123 Vasteras, Sweden
[2] Univ Illinois, Dept Mech Sci & Engn, Inst Condensed Matter Theory, Urbana, IL 61801 USA
[3] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2022年 / 73卷 / 05期
关键词
Random field; Symmetry class; Polyadics; CLASSIFICATION;
D O I
10.1007/s00033-022-01842-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper considers mean-square continuous, wide-sense homogeneous, and isotropic random fields taking values in a linear space of polyadics. We find a set of such fields whose values are symmetric and positive-definite dyadics, and outline a strategy for their simulation.
引用
收藏
页数:21
相关论文
共 29 条
  • [1] [Anonymous], 1929, Proc. R. Soc. A
  • [2] Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity
    Auffray, N.
    He, Q. C.
    Le Quang, H.
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 159 : 197 - 210
  • [3] Bredon G., 1972, PURE APPL MATH
  • [4] Drew TB, 1961, HDB VECTOR POLYADIC
  • [5] Gibbs J. W., 1961, THERMODYNAMICS, V1, P557
  • [6] Godunov S. K., 2004, SIB MAT ZH, V45, P540, DOI DOI 10.1023/B:SIMJ.0000028609.97557.B8
  • [7] Golubitsky M., 1988, APPL MATH SCI, VII
  • [8] Herman B., 1945, Comptes Rendus (Doklady) Acad. Sci. URSS, V48, P89
  • [9] Hofmann K.H., 2020, STRUCTURE COMPACT GR, V25
  • [10] The Clifford-Klein space problem
    Hopf, H
    [J]. MATHEMATISCHE ANNALEN, 1926, 95 : 313 - 339