LEAST ENERGY SIGN-CHANGING SOLUTIONS FOR THE NONLINEAR SCHRODINGER-POISSON SYSTEM

被引:0
作者
Ji, Chao [1 ]
Fang, Fei [2 ]
Zhang, Binlin [3 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
[2] Beijing Technol & Business Univ, Dept Math, Beijing 100048, Peoples R China
[3] Heilongjiang Inst Technol, Dept Math, Harbin 150050, Heilongjiang, Peoples R China
基金
中国博士后科学基金;
关键词
Schrodinger-Poisson system; sign-changing solutions; constraint variational method; quantitative deformation lemma; NODAL SOLUTIONS; BOUNDED DOMAINS; EQUATIONS; EXISTENCE; R-3; STATES; POTENTIALS; SYMMETRY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the existence of the least energy sign-changing solutions for the Schrodinger-Poisson system -Delta u + V(x)u + lambda phi(x)u = f(u), in R-3, -Delta phi = u(2), in R-3. Because the so-called nonlocal term lambda phi(x) u is involved in the system, the variational functional of the above system has totally different properties from the case of lambda = 0. By constraint variational method and quantitative deformation lemma, we prove that the above problem has one least energy sign-changing solution. Moreover, for any lambda > 0, we show that the energy of a sign-changing solution is strictly larger than twice of the ground state energy. Finally, we consider lambda as a parameter and study the convergence property of the least energy sign-changing solutions as lambda SE arrow 0.
引用
收藏
页数:13
相关论文
共 31 条
  • [1] Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains
    Alves, Claudianor O.
    Souto, Marco A. S.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06): : 1153 - 1166
  • [2] On Schrodinger-Poisson Systems
    Ambrosetti, Antonio
    [J]. MILAN JOURNAL OF MATHEMATICS, 2008, 76 (01) : 257 - 274
  • [3] [Anonymous], 1997, Minimax theorems
  • [4] [Anonymous], 2015, MONOGRAPHS RES NOTES
  • [5] Ground state solutions for the nonlinear Schrodinger-Maxwell equations
    Azzollini, A.
    Pomponio, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) : 90 - 108
  • [6] On the Schrodinger-Maxwell equations under the effect of a general nonlinear term
    Azzollini, A.
    d'Avenia, P.
    Pomponio, A.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02): : 779 - 791
  • [7] Partial symmetry of least energy nodal solutions to some variational problems
    Bartsch, T
    Weth, T
    Willew, M
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1): : 1 - 18
  • [8] Three nodal solutions of singularly perturbed elliptic equations on domains without topology
    Bartsch, T
    Weth, T
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03): : 259 - 281
  • [9] Sign changing solutions of superlinear Schrodinger equations
    Bartsch, T
    Liu, ZL
    Weth, T
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) : 25 - 42
  • [10] Nonlinear Schrodinger equations with steep potential well
    Bartsch, T
    Pankov, A
    Wang, ZQ
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) : 549 - 569