Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories

被引:109
作者
Hase, Florian [1 ]
Roch, Loic M. [1 ]
Aspuru-Guzik, Alan [1 ,2 ,3 ,4 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Univ Toronto, Dept Chem, Toronto, ON M5S3H6, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON M5S3H6, Canada
[4] Vector Inst Artificial Intelligence, Toronto, ON M5S1M1, Canada
关键词
NORMAL CONSTRAINT METHOD; WEIGHTED-SUM METHOD; II CORE COMPLEXES; ENERGY-TRANSFER; ADAPTATION; ALGORITHM; ANTENNA;
D O I
10.1039/c8sc02239a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Finding the ideal conditions satisfying multiple pre-defined targets simultaneously is a challenging decision-making process, which impacts science, engineering, and economics. Additional complexity arises for tasks involving experimentation or expensive computations, as the number of evaluated conditions must be kept low. We propose Chimera as a general purpose achievement scalarizing function for multi-target optimization where evaluations are the limiting factor. Chimera combines concepts of a priori scalarizing with lexicographic approaches and is applicable to any set of n unknown objectives. Importantly, it does not require detailed prior knowledge about individual objectives. The performance of Chimera is demonstrated on several well-established analytic multi-objective benchmark sets using different single-objective optimization algorithms. We further illustrate the applicability and performance of Chimera with two practical examples: (i) the auto-calibration of a virtual robotic sampling sequence for direct-injection, and (ii) the inverse-design of a four-pigment excitonic system for an efficient energy transport. The results indicate that Chimera enables a wide class of optimization algorithms to rapidly find ideal conditions. Additionally, the presented applications highlight the interpretability of Chimera to corroborate design choices for tailoring system parameters.
引用
收藏
页码:7642 / 7655
页数:14
相关论文
共 79 条
[1]   How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria [J].
Adolphs, Julia ;
Renger, Thomas .
BIOPHYSICAL JOURNAL, 2006, 91 (08) :2778-2797
[2]   Thermo-economic optimization of Stirling heat pump by using non-dominated sorting genetic algorithm [J].
Ahmadi, Mohammad H. ;
Ahmadi, Mohammad Ali ;
Bayat, Roham ;
Ashouri, Milad ;
Feidt, Michel .
ENERGY CONVERSION AND MANAGEMENT, 2015, 91 :315-322
[3]  
Anderson M.J., 2016, DOE simplified: practical tools for effective experimentation
[4]  
[Anonymous], RAPPORT TECHNIQUE
[5]  
[Anonymous], 2012, MULTIPLE OBJECTIVE D
[6]  
[Anonymous], J PHYS SOC JPN
[7]  
[Anonymous], 2012, P 25 INT C NEURIPS
[8]  
[Anonymous], GITHUB
[9]  
[Anonymous], 2004, MULTIOBJECTIVE PROGR
[10]  
[Anonymous], 2006, FIELDS MITACS IND PR