Review of multistep methods for the numerical solution of the radial Schrodinger equation

被引:82
作者
Vigo-Aguiar, J [1 ]
Simos, TE
机构
[1] Univ Salamanca, Dept Appl Math, E-37008 Salamanca, Spain
[2] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Sch Engn, GR-67100 Xanthi, Greece
关键词
Cowell methods; multistep methods; explicit methods; adapted methods; exponential fitting methods; Schrodinger equation; resonance problem; bound-states problem;
D O I
10.1002/qua.20495
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A review of multistep methods for the numerical solution of the Schrodinger equation is presented. Since the literature reports difficulties in the production of some of the Bettis-Cowell methods, we have included a simple way that permits production of these methods for any algebraic and trigonometric order. Numerical comparisons on resonance problems and bound-states problems are also described. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:278 / 290
页数:13
相关论文
共 22 条
[1]  
[Anonymous], ATOMIC STRUCTURE COM
[2]  
Blatt J M, 1967, J COMP PHYSIOL, V1, P382, DOI [10.1016/0021-9991(67)90046-0, DOI 10.1016/0021-9991(67)90046-0]
[3]  
Henrici P., 1962, Discrete variable methods in ordinary differential equations
[4]  
Herzberg G., 1966, ELECT SPECTRA ELECT
[5]   A NUMEROV-LIKE SCHEME FOR THE NUMERICAL-SOLUTION OF THE SCHRODINGER-EQUATION IN THE DEEP CONTINUUM SPECTRUM OF ENERGIES [J].
IXARU, LG ;
RIZEA, M .
COMPUTER PHYSICS COMMUNICATIONS, 1980, 19 (01) :23-27
[6]  
Ixaru LG., 1978, TOPICS THEORETICAL P
[7]  
Landau L., 1965, QUANTUM MECH
[8]   CHEBYSHEVIAN MULTISTEP METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS [J].
LYCHE, T .
NUMERISCHE MATHEMATIK, 1972, 19 (01) :65-&
[9]  
PRIGOGINE I, 1997, ADV CHEM PHYS, V93
[10]   EXPONENTIAL-FITTING METHODS FOR NUMERICAL-SOLUTION OF SCHRODINGER EQUATION [J].
RAPTIS, A ;
ALLISON, AC .
COMPUTER PHYSICS COMMUNICATIONS, 1978, 14 (1-2) :1-5