On abstract commensurators of groups

被引:14
作者
Bartholdi, L. [1 ]
Bogopolski, O. [2 ,3 ]
机构
[1] GA Univ Gottingen, Math Inst, D-37073 Gottingen, Germany
[2] Russian Acad Sci, Inst Math, Siberian Branch, Novosibirsk 630090, Russia
[3] HH Univ Dusseldorf, Math Inst, D-40225 Dusseldorf, Germany
关键词
D O I
10.1515/JGT.2010.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, under a technical assumption, that the abstract commensurator of a group that splits over a cyclic subgroup is not finitely generated. This applies in particular to free groups, surface groups, and more generally to all torsion-free word-hyperbolic groups with infinite outer automorphism group and abelianization of rank at least 2. On the other hand, we remark that the condition on the outer automorphism group cannot be removed.
引用
收藏
页码:903 / 922
页数:20
相关论文
共 22 条
  • [1] [Anonymous], 1981, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)
  • [2] [Anonymous], ASTERISQUE
  • [3] [Anonymous], 1999, METRIC SPACES NONPOS
  • [4] [Anonymous], 1997, 3 DIMENSIONAL GEOMET
  • [5] [Anonymous], 2007, GAP GROUPS ALG PROGR
  • [6] BRIDSON M, 1994, Paulin Enseign Math, V40, P267
  • [7] VERY SMALL-GROUP ACTIONS ON R-TREES AND DEHN TWIST AUTOMORPHISMS
    COHEN, MM
    LUSTIG, M
    [J]. TOPOLOGY, 1995, 34 (03) : 575 - 617
  • [8] DEBLOIS J, DOUBLED TETRUS
  • [9] Commensurations of Out(Fn)
    Farb, Benson
    Handel, Michael
    [J]. PUBLICATIONS MATHEMATIQUES DE L'IHES, NO 105, 2007, 105 : 1 - 48
  • [10] IVANOV NV, 1997, INT MATH RES NOTICES, V14, P651