Dynamics of breathers in discrete nonlinear Schrodinger models

被引:51
作者
Johansson, M [1 ]
Aubry, S
Gaididei, YB
Christiansen, PL
Rasmussen, KO
机构
[1] Tech Univ Denmark, Dept Math Modelling, DK-2800 Lyngby, Denmark
[2] CENS, CEA, CNRS, Leon Brillouin Lab, F-91191 Gif Sur Yvette, France
[3] Inst Theoret Phys, UA-252143 Kiev, Ukraine
来源
PHYSICA D | 1998年 / 119卷 / 1-2期
关键词
D O I
10.1016/S0167-2789(98)00070-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We review some recent results concerning the existence and stability of spatially localized and temporally quasiperiodic (non-stationary) excitations in discrete nonlinear Schrodinger (DNLS) models. In two dimensions, we show the existence of linearly stable, stationary and non-stationary localized vortex-like solutions. We also show that stationary on-site localized excitations can have internal 'breathing' modes which are spatially localized and symmetric. The excitation of these modes leads to slowly decaying, quasiperiodic oscillations. Finally, we show that for some generalizations of the DNLS equation where bistability occurs, a controlled switching between stable states is possible by exciting an internal breathing mode above a threshold value. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:115 / 124
页数:10
相关论文
共 42 条
  • [1] EXACT-SOLUTIONS FOR THE QUANTUM NONLINEAR TRIMER
    ANDERSEN, JD
    KENKRE, VM
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1993, 177 (02): : 397 - 404
  • [2] Mobility and reactivity of discrete breathers
    Aubry, S
    Cretegny, T
    [J]. PHYSICA D, 1998, 119 (1-2): : 34 - 46
  • [3] Breathers in nonlinear lattices: Existence, linear stability and quantization
    Aubry, S
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) : 201 - 250
  • [4] CHAOTIC POLARONIC AND BIPOLARONIC STATES IN THE ADIABATIC HOLSTEIN MODEL
    AUBRY, S
    ABRAMOVICI, G
    RAIMBAULT, JL
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1992, 67 (3-4) : 675 - 780
  • [5] AUBRY S, 1996, UNPUB PHYSICA D
  • [6] BAESENS C, 1996, UNPUB PHYSICA D
  • [7] ON LOCALIZATION IN THE DISCRETE NONLINEAR SCHRODINGER-EQUATION
    BANG, O
    RASMUSSEN, JJ
    CHRISTIANSEN, PL
    [J]. PHYSICA D, 1993, 68 (01): : 169 - 173
  • [8] TEMPERATURE EFFECTS IN A NONLINEAR MODEL OF MONOLAYER SCHEIBE AGGREGATES
    BANG, O
    CHRISTIANSEN, PL
    IF, F
    RASMUSSEN, KO
    GAIDIDEI, YB
    [J]. PHYSICAL REVIEW E, 1994, 49 (05): : 4627 - 4636
  • [9] THE 3-WAVE-GUIDE NONLINEAR DIRECTIONAL COUPLER - THE CENTER WAVE-GUIDE EXCITATION
    BERNSTEIN, LJ
    [J]. OPTICS COMMUNICATIONS, 1992, 94 (05) : 406 - 416
  • [10] A NUMERICAL-CALCULATION OF A WEAKLY NONLOCAL SOLITARY WAVE - THE PHI-4 BREATHER
    BOYD, JP
    [J]. NONLINEARITY, 1990, 3 (01) : 177 - 195