State, global, and local parameter estimation using local ensemble Kalman filters: Applications to online machine learning of chaotic dynamics

被引:13
|
作者
Malartic, Q. [1 ,2 ]
Farchi, A. [1 ]
Bocquet, M. [1 ]
机构
[1] Ecole Ponts & EDF R&D, CEREA, F-77420 Ile De France, France
[2] Sorbonne Univ, CNRS, Inst Polytech Paris, Ecole Polytech,LMD IPSL,ENS,PSL Univ, Paris, France
关键词
chaotic dynamics; data-driven dynamics; LEnSRF; LETKF; local ensemble Kalman filters; machine learning; parameter estimation; DATA ASSIMILATION; WEATHER;
D O I
10.1002/qj.4297
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In a recent methodological article, we showed how to learn chaotic dynamics along with the state trajectory from sequentially acquired observations, using local ensemble Kalman filters. Here, we investigate more systematically the possibility of using a local ensemble Kalman filter with either covariance localisation or local domains, in order to retrieve the state and a mix of key global and local parameters. Global parameters are meant to represent the surrogate dynamical core, for instance through a neural network, which is reminiscent of data-driven machine learning of dynamics, while the local parameters typically stand for the forcings of the model. Aiming at joint state and parameter estimation, a family of algorithms for covariance and local domain localisation is proposed. In particular, we show how to update global parameters rigorously using a local-domain ensemble Kalman filter (EnKF) such as the local ensemble transform Kalman filter (LETKF), an inherently local method. The approach is tested with success on the 40-variable Lorenz model using several of the local EnKF flavors. A two-dimensional illustration based on a multilayer Lorenz model is finally provided. It uses radiance-like nonlocal observations. It features both local domains and covariance localisation, in order to learn the chaotic dynamics and the local forcings. This article addresses more generally the key question of online estimation of both global and local model parameters.
引用
收藏
页码:2167 / 2193
页数:27
相关论文
共 50 条
  • [41] Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter
    Rui-xun Lai
    Hong-wei Fang
    Guo-jian He
    Xin Yu
    Ming Yang
    Ming Wang
    Journal of Hydrodynamics, 2013, 25 : 564 - 571
  • [42] Dual state-parameter optimal estimation of one-dimensional open channel model using ensemble Kalman filter
    赖瑞勋
    方红卫
    何国建
    余欣
    杨明
    王明
    Journal of Hydrodynamics, 2013, 25 (04) : 564 - 571
  • [43] Machinery fault diagnosis using joint global and local/nonlocal discriminant analysis with selective ensemble learning
    Yu, Jianbo
    JOURNAL OF SOUND AND VIBRATION, 2016, 382 : 340 - 356
  • [44] Estimating global precipitation fields by interpolating rain gauge observations using the local ensemble transform Kalman filter and reanalysis precipitation
    Muto, Yuka
    Kotsuki, Shunji
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (24) : 5401 - 5417
  • [45] State-of-Charge Estimation for Lithium-Ion Batteries Using a Kalman Filter Based on Local Linearization
    Yu, Zhihao
    Huai, Ruituo
    Xiao, Linjing
    ENERGIES, 2015, 8 (08): : 7854 - 7873
  • [46] Estimation of local scour around monopile foundations for offshore structures using machine learning models
    Guan, Da-Wei
    Xie, Yu-Xuan
    Chiew, Yee-Meng
    Ding, Fan
    Ferradosa, Tiago Fazeres
    Hong, Jianhao
    OCEAN ENGINEERING, 2024, 296
  • [47] Global and Local Frameworks for Vehicle State Estimation Using Temporally Previewed Mapped Lane Features
    Brown, Alexander A.
    Brennan, Sean N.
    2013 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2013, : 127 - 133
  • [48] Experiences in multiyear combined state-parameter estimation with an ecosystem model of the North Atlantic and Arctic Oceans using the Ensemble Kalman Filter
    Simon, Ehouarn
    Samuelsen, Annette
    Bertino, Laurent
    Mouysset, Sandrine
    JOURNAL OF MARINE SYSTEMS, 2015, 152 : 1 - 17
  • [49] Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering
    Capalbo, Cristian Enrico
    De Gregoriis, Daniel
    Tamarozzi, Tommaso
    Devriendt, Hendrik
    Naets, Frank
    Carbone, Giuseppe
    Mundo, Domenico
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [50] State of Charge Estimation for Lithium-ion Batteries using Extreme Learning Machine and Extended Kalman Filter
    Ren, Zhong
    Du, Changqing
    IFAC PAPERSONLINE, 2022, 55 (24): : 197 - 202