State, global, and local parameter estimation using local ensemble Kalman filters: Applications to online machine learning of chaotic dynamics

被引:13
|
作者
Malartic, Q. [1 ,2 ]
Farchi, A. [1 ]
Bocquet, M. [1 ]
机构
[1] Ecole Ponts & EDF R&D, CEREA, F-77420 Ile De France, France
[2] Sorbonne Univ, CNRS, Inst Polytech Paris, Ecole Polytech,LMD IPSL,ENS,PSL Univ, Paris, France
关键词
chaotic dynamics; data-driven dynamics; LEnSRF; LETKF; local ensemble Kalman filters; machine learning; parameter estimation; DATA ASSIMILATION; WEATHER;
D O I
10.1002/qj.4297
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
In a recent methodological article, we showed how to learn chaotic dynamics along with the state trajectory from sequentially acquired observations, using local ensemble Kalman filters. Here, we investigate more systematically the possibility of using a local ensemble Kalman filter with either covariance localisation or local domains, in order to retrieve the state and a mix of key global and local parameters. Global parameters are meant to represent the surrogate dynamical core, for instance through a neural network, which is reminiscent of data-driven machine learning of dynamics, while the local parameters typically stand for the forcings of the model. Aiming at joint state and parameter estimation, a family of algorithms for covariance and local domain localisation is proposed. In particular, we show how to update global parameters rigorously using a local-domain ensemble Kalman filter (EnKF) such as the local ensemble transform Kalman filter (LETKF), an inherently local method. The approach is tested with success on the 40-variable Lorenz model using several of the local EnKF flavors. A two-dimensional illustration based on a multilayer Lorenz model is finally provided. It uses radiance-like nonlocal observations. It features both local domains and covariance localisation, in order to learn the chaotic dynamics and the local forcings. This article addresses more generally the key question of online estimation of both global and local model parameters.
引用
收藏
页码:2167 / 2193
页数:27
相关论文
共 50 条
  • [1] ONLINE LEARNING OF BOTH STATE AND DYNAMICS USING ENSEMBLE KALMAN FILTERS
    Bocquet, Marc
    Farchi, Alban
    Malartic, Quentin
    FOUNDATIONS OF DATA SCIENCE, 2021, 3 (03): : 305 - 330
  • [2] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [3] Constrained Nonlinear State Estimation Using Ensemble Kalman Filters
    Prakash, J.
    Patwardhan, Sachin C.
    Shah, Sirish L.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (05) : 2242 - 2253
  • [4] Local Decomposition of Kalman Filters and its Application for Secure State Estimation
    Liu, Xinghua
    Mo, Yilin
    Garone, Emanuele
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (10) : 5037 - 5044
  • [5] State and Parameter Estimation of Photovoltaic Modules using Unscented Kalman Filters
    González-Cagigal M.Á.
    Rosendo-Macías J.A.
    Gómez-Expósito A.
    Renewable Energy and Power Quality Journal, 2022, 20 : 126 - 131
  • [6] Online State and Parameter Estimation of Ultracapacitor Using Marginalized Kalman Filter
    Madhumitha, S.
    Sudheesh, P.
    Anita, J. P.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 167 - 174
  • [7] Dynamic State Estimation and Parameter Calibration of a DFIG Using the Ensemble Kalman Filter
    Fan, Rui
    Huang, Zhenyu
    Wang, Shaobu
    Diao, Ruisheng
    Meng, Da
    2015 IEEE POWER & ENERGY SOCIETY GENERAL MEETING, 2015,
  • [8] State and parameter estimation of hydrologic models using the constrained ensemble Kalman filter
    Wang, Dingbao
    Chen, Yuguo
    Cai, Ximing
    WATER RESOURCES RESEARCH, 2009, 45
  • [9] Parameter Estimation of MEMS Gyroscope Using Local State Estimation Methods
    Kral, Ladislav
    Simandl, Miroslav
    IFAC PAPERSONLINE, 2015, 48 (28): : 279 - 284
  • [10] Parameter and state estimation with ensemble Kalman filter based algorithms for convective-scale applications
    Ruckstuhl, Y. M.
    Janjic, T.
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (712) : 826 - 841