The characteristics of a sorption-enhanced steam-methane reaction for the production of hydrogen using CO2 sorbent

被引:0
|
作者
Wu, SF [1 ]
Beum, TH
Yang, JI
Kim, JN
机构
[1] Zhengzhou Univ, Dept Chem Engn, Hangzhou 310027, Peoples R China
[2] Korea Inst Energy Res, Separat Proc Res Ctr, Taejon 305343, South Korea
关键词
hydrogen; reactive-adsorption; calcium hydroxide; steam-methane reforming;
D O I
暂无
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of the present study is to characterize the production of hydrogen with a sorption-enhanced steam-methane reaction process using Ca(OH)(2) as the CO2 adsorbent. Theoretical equilibrium compositions at different operation conditions were calculated using an iterative method. It was found that with Ca(OH)(2) as the CO2 sorbent, the concentration of CO2 adsorption was reduced in the product stream, that gave rise to higher methane conversion and higher H-2 concentration. An experimental setup was built to test the theoretical calculation. The effects of sorbents and the particle size of Ca(OH)(2) on the concentration of CO2 and H-2 were investigated in detail. Results showed that the reactor packed with catalyst and Ca(OH)2 particles produced H-2 concentration of 94%. It was nearly 96% of the theoretical equilibrium limit, much higher than H-2 equilibrium concentration of 67.5% without CO2 sorption under the same conditions of 500 degrees C, 0.2 MPa pressure and a steam-to-methane ratio 6. In addition, the residual mole fraction of CO2 was less than 0.001.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 50 条
  • [1] The Characteristics of a Sorption-enhanced Steam-Methane Reaction for the Production of Hydrogen Using CO2 Sorbent
    吴素芳
    T.H.Beum
    J.I.Yang
    J.N.Kim
    ChineseJournalofChemicalEngineering, 2005, (01) : 49 - 53
  • [2] Sorption-enhanced Steam Methane Reforming for Combined CO2 Capture and Hydrogen Production: A State-of-the-Art Review
    Soltani, Salman Masoudi
    Lahiri, Abhishek
    Bahzad, Husain
    Clough, Peter
    Gorbounov, Mikhail
    Yan, Yongliang
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2021, 1
  • [3] Sorption-enhanced CO and CO2 methanation (SEM) for the production of high purity methane
    Gomez, Laura
    Martinez, Isabel
    Navarro, Maria V.
    Garcia, Tomas
    Murillo, Ramon
    CHEMICAL ENGINEERING JOURNAL, 2022, 440
  • [4] On the Modeling of Continuous H2 Production by Sorption-Enhanced Steam Methane Reforming
    Yan, Linbo
    Jia, Ziyue
    Liu, Yang
    Wang, Liang
    Shi, Jianye
    Qian, Mingyuan
    He, Boshu
    CATALYSTS, 2025, 15 (03)
  • [5] Hydrogen production by sorption-enhanced steam reforming of glycerol
    Dou, Binlin
    Dupont, Valerie
    Rickett, Gavin
    Blakeman, Neil
    Williams, Paul T.
    Chen, Haisheng
    Ding, Yulong
    Ghadiri, Mojtaba
    BIORESOURCE TECHNOLOGY, 2009, 100 (14) : 3540 - 3547
  • [6] Hydrogen production through sorption-enhanced steam methane reforming and membrane technology: A review
    Barelli, L.
    Bidini, G.
    Gallorini, F.
    Servili, S.
    ENERGY, 2008, 33 (04) : 554 - 570
  • [7] Sorption enhanced reaction process for direct production of fuel-cell grade hydrogen by low temperature catalytic steam-methane reforming
    Beaver, Michael G.
    Caram, Hugo S.
    Sircar, Shivaji
    JOURNAL OF POWER SOURCES, 2010, 195 (07) : 1998 - 2002
  • [8] Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent
    Xie, Miaomiao
    Zhou, Zhiming
    Qi, Yang
    Cheng, Zhenmin
    Yuan, Weikang
    CHEMICAL ENGINEERING JOURNAL, 2012, 207 : 142 - 150
  • [9] Calcium-based pellets for continuous hydrogen production by sorption-enhanced steam methane reforming
    Wang, Nana
    Feng, Yuchuan
    Guo, Xin
    Ma, Suxia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 897 - 909
  • [10] Analysis of hydrogen production costs in Steam-Methane Reforming considering integration with electrolysis and CO2 capture
    Katebah, Mary
    Al-Rawashdeh, Ma'moun
    Linke, Patrick
    CLEANER ENGINEERING AND TECHNOLOGY, 2022, 10