SnO2 surface defects tuned by (NH4)2S for high-efficiency perovskite solar cells

被引:48
|
作者
Ai, Yuqian [1 ,2 ]
Liu, Weiqing [1 ]
Shou, Chunhui [3 ]
Yan, Jin [2 ]
Li, Nan [2 ]
Yang, Zhenhai [2 ]
Song, Wei [2 ]
Yan, Baojie [2 ]
Sheng, Jiang [2 ]
Ye, Jichun [2 ]
机构
[1] Nanchang Hangkong Univ, Sch Testing & Photoelect Engn, Nanchang 330063, Jiangxi, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Zhejiang, Peoples R China
[3] Zhejiang Energy Grp R&D, Hangzhou 310003, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Perovskite solar cells; SnO2 electron transport layer; Oxygen vacancy; Surface passivation; Carrier transport dynamic; DOPED SNO2;
D O I
10.1016/j.solener.2019.11.004
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Tin oxide (SnO2) is widely adopted as an electron transport layer (ETL) in perovskite solar cells (PSCs). However, the oxygen vacancies of the SnO2 not only are the trap states of the nonradiative recombination of photogenerated carriers, but also build the potential barrier of carrier transport. To solve this issue, ammonium sulfide [(NH4)(2)S] is introduced to the SnO2 precursor for passivating the surface defects by terminating the Sn dangling bonds (S-Sn bonds). After reducing the surface traps, the electron mobility and conductivity of SnO2 film are enhanced significantly while the carrier recombination is decreased. Additionally, the energy level of S-SnO2 is also slightly modified. Therefore, this sulfide-passivated mothed remarkably improves the electron collection efficiency of the ETL. Furthermore, the linkage of Sn-S-Pb anchors the perovskite crystals at the perovskite/SnO2 interface, which increases the electron extraction efficiency and the stability of PSC. Based on this S-SnO2 ETL, the power conversion efficiency of the PSC is greatly promoted from 18.67% to 20.03%, compared with the reference one. In this study, it is proven that the surface defect passivation of SnO2 is an efficient and simple method to improve the photovoltaic performance, as a promising ETL for high-efficiency device.
引用
收藏
页码:541 / 547
页数:7
相关论文
共 50 条
  • [1] Review on Surface Modification of SnO2 Electron Transport Layer for High-Efficiency Perovskite Solar Cells
    Huy, Vo Pham Hoang
    Bark, Chung-Wung
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [2] Synchronous amelioration of SnO2 surface aggregation and buried layer defects by sodium salts for high-efficiency and stable perovskite solar cells
    Zha, Leying
    Ning, Lei
    Zhang, Pengyun
    Du, Pingfan
    Xiong, Jie
    Song, Lixin
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (10): : 2495 - 2503
  • [3] A facile strategy to adjust SnO2/perovskite interfacial properties for high-efficiency perovskite solar cells
    Tao, Junlei
    Yu, Zhaohui
    Liu, Xiaoni
    Xue, Jingwei
    Shen, Jinliang
    Guo, Hansong
    Kong, Weiguang
    Fu, Guangsheng
    Yang, Shaopeng
    JOURNAL OF MATERIALS CHEMISTRY C, 2022, 10 (21) : 8414 - 8421
  • [4] Dual Passivation of Perovskite and SnO2 for High-Efficiency MAPbI3 Perovskite Solar Cells
    Chen, Yali
    Zuo, Xuejiao
    He, Yiyang
    Qian, Fang
    Zuo, Shengnan
    Zhang, Yalan
    Liang, Lei
    Chen, Zuqin
    Zhao, Kui
    Liu, Zhike
    Gou, Jing
    Liu, Shengzhong
    ADVANCED SCIENCE, 2021, 8 (05)
  • [5] Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells
    Chen, Qian
    Peng, Changtao
    Du, Lin
    Hou, Tian
    Yu, Wenjing
    Chen, Dong
    Shu, Hui
    Huang, Dejun
    Zhou, Xiangqing
    Zhang, Jinyang
    Zhang, Wenfeng
    Li, Haijin
    Xie, Jiale
    Huang, Yuelong
    JOURNAL OF ENERGY CHEMISTRY, 2022, 66 : 250 - 259
  • [6] Ultrafine SnO2 colloids with enhanced interface quality for high-efficiency perovskite solar cells
    Paik, Min Jae
    Kim, Yu Young
    Kim, Jongbeom
    Park, Jaewang
    Seok, Sang Il
    JOULE, 2024, 8 (07) : 2073 - 2086
  • [7] Antimony trifluoride-incorporated SnO2 for high-efficiency planar perovskite solar cells
    Zhang, Li
    Li, Hui
    Zhuang, Jing
    Luan, Yigang
    Wu, Sixuan
    Niu, Guosheng
    Chu, Liang
    Cao, Xiaofei
    Li, Xing'ao
    Wang, Jizheng
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (43) : 15428 - 15434
  • [8] Chemical bath deposited SnO2 for high-efficiency perovskite solar cells on Ti substrates
    Feng Y.
    Geng C.
    Xiao Y.
    Chen X.
    Jiang X.
    Ku Z.
    Cheng Y.
    Peng Y.
    Materials Science in Semiconductor Processing, 2023, 164
  • [9] Synergy of mesoporous SnO2 and RbF modification for high-efficiency and stable perovskite solar cells
    Qian Chen
    Changtao Peng
    Lin Du
    Tian Hou
    Wenjing Yu
    Dong Chen
    Hui Shu
    Dejun Huang
    Xiangqing Zhou
    Jinyang Zhang
    Wenfeng Zhang
    Haijin Li
    Jiale Xie
    Yuelong Huang
    Journal of Energy Chemistry , 2022, (03) : 250 - 259
  • [10] Chitosan Derivatives Modified with SnO2 for High-Efficiency Carbon-Based Perovskite Solar Cells
    Xie, Yahong
    Zhao, Ke
    Wang, Haobin
    Qi, Ying
    Wei, Peng
    Cheng, Jian
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (14) : 7377 - 7386