On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations

被引:4
|
作者
Jones, Christopher K. R. T. [1 ]
Marangell, Robert [2 ]
Miller, Peter D. [3 ]
Plaza, Ramon G. [4 ]
机构
[1] Univ N Carolina, Dept Math, Chapel Hill, NC 27599 USA
[2] Univ Sydney, Sch Math & Stat F07, Sydney, NSW 2006, Australia
[3] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[4] Univ Nacl Autonoma Mexico, Inst Invest Matemat Aplicadas & Sistemas, Apdo Postal 20-726, Mexico City 01000, DF, Mexico
来源
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
nonlinear Klein-Gordon equation; periodic wavetrains; spectral stability; modulation theory; TRAVELING-WAVES;
D O I
10.1007/s00574-016-0159-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this contribution, we summarize recent results [8, 9] on the stability analysis of periodicwavetrains for the sine-Gordon and general nonlinearKlein-Gordon equations. Stability is considered both from the point of view of spectral analysis of the linearized problem and from the point of view of the formal modulation theory of Whitham [12]. The connection between these two approaches is made through a modulational instability index [9], which arises from a detailed analysis of the Floquet spectrum of the linearized perturbation equation around the wave near the origin. We analyze waves of both subluminal and superluminal propagation velocities, as well as waves of both librational and rotational types. Our general results imply in particular that for the sine-Gordon case only subluminal rotationalwaves are spectrally stable. Our proof of this fact corrects a frequently cited one given by Scott [11].
引用
收藏
页码:417 / 429
页数:13
相关论文
共 50 条
  • [1] On the spectral and modulational stability of periodic wavetrains for nonlinear Klein-Gordon equations
    Christopher K. R. T. Jones
    Robert Marangell
    Peter D. Miller
    Ramón G. Plaza
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 417 - 429
  • [2] Spectral and modulational stability of periodic wavetrains for the nonlinear Klein-Gordon equation
    Jones, Christopher K. R. T.
    Marangell, Robert
    Miller, Peter D.
    Plaza, Ramon G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (12) : 4632 - 4703
  • [3] ON THE SPECTRAL STABILITY OF PERIODIC WAVES OF THE KLEIN-GORDON EQUATION
    Demirkaya, Aslihan
    Hakkaev, Sevdzhan
    Stanislavova, Milena
    Stefanov, Atanas
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2015, 28 (5-6) : 431 - 454
  • [4] THE MODULATIONAL INSTABILITY OF THE NONLINEAR KLEIN-GORDON EQUATION
    PARKES, EJ
    WAVE MOTION, 1991, 13 (03) : 261 - 275
  • [5] Transverse Orbital Stability of Periodic Traveling Waves for Nonlinear Klein-Gordon Equations
    Angulo Pava, Jaime
    Plaza, Ramon G.
    STUDIES IN APPLIED MATHEMATICS, 2016, 137 (04) : 473 - 501
  • [6] Stability of solitary waves in nonlinear Klein-Gordon equations
    Raban, Pablo
    Alvarez-Nodarse, Renato
    Quintero, Niurka R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (46)
  • [7] The periodic solutions for a class of coupled nonlinear Klein-Gordon equations
    Liu, SK
    Fu, ZT
    Liu, SD
    Wang, ZG
    PHYSICS LETTERS A, 2004, 323 (5-6) : 415 - 420
  • [9] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555
  • [10] Decay for nonlinear Klein-Gordon equations
    Georgiev, V
    Lucente, S
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (04): : 529 - 555