Adaptive synchronization of uncertain chaotic systems via switching mechanism

被引:5
作者
Feng Yi-Fu [1 ]
Zhang Qing-Ling [2 ]
机构
[1] Jilin Normal Univ, Sch Math, Siping 136000, Peoples R China
[2] Northeastern Univ, Inst Syst Sci, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
chaos synchronization; adaptive synchronization; switching mechanism; DIGITAL-COMMUNICATIONS; FEEDBACK-CONTROL; MODULATION; CIRCUITS; NETWORK;
D O I
10.1088/1674-1056/19/12/120504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper deals with the problem of synchronization for a class of uncertain chaotic systems. The uncertainties under consideration are assumed to be Lipschitz-like nonlinearity in tracking error, with unknown growth rate. A logic-based switching mechanism is presented for tracking a smooth orbit that can be a limit cycle orachaotic orbit of an other system. Based on the Lyapunov approach, the adaptation law is determined to tune the controller gain vector online according to the possible nonlinearities. To demonstrate the efficiency of the proposed scheme, the well-known chaotic system namely Chua's circuit is considered as an illustrative example.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Adaptive multi switching combination synchronization of chaotic systems with unknown parameters [J].
Khan A. ;
Khattar D. ;
Prajapati N. .
International Journal of Dynamics and Control, 2018, 6 (2) :621-629
[22]   Control and Synchronization for Uncertain Chaotic Systems with LMI Approach [J].
Deng, Lili ;
Xu, Junqun .
2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, :1695-1700
[23]   Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity [J].
Kebriaei, Hamed ;
Yazdanpanah, M. Javad .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (02) :430-441
[24]   Rubost adaptive fault-tolerant synchronization control for uncertain chaotic systems [J].
Deng L.-W. ;
Song G. ;
Gao J.-S. .
Song, Ge, 1600, Editorial Department of Electric Machines and Control (21) :114-122
[25]   Finite-time reduced order synchronization of uncertain chaotic systems with input nonlinearities via adaptive control [J].
Luo, Jing ;
Chen, Xue ;
Zhang, Hongrui ;
Tian, Yuan .
PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, :2002-2007
[26]   Global synchronization of uncertain chaotic systems via discrete-time sliding mode control [J].
Pai, Ming-Chang .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 227 :663-671
[27]   Adaptive synchronization of Chen chaotic system with uncertain parameters [J].
Department of Electronic Information Zhejiang Ocean University Zhoushan ChinaLIU Yuliang ZHU Jie DING Dawei Department of Electronic Engineering Shanghai Jiaotong University Shanghai China .
The Journal of China Universities of Posts and Telecommunications, 2007, (02) :103-105
[28]   Adaptive synchronization of a unified chaotic system with an uncertain parameter [J].
Park, JH .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2005, 6 (02) :201-206
[29]   Robust synchronization of a class of uncertain chaotic systems [J].
Ahmadi, Ali Akbar ;
Majd, Vahid Johari .
CHAOS SOLITONS & FRACTALS, 2009, 42 (02) :1092-1096
[30]   Intelligent quadratic optimal synchronization of uncertain chaotic systems via LMI approach [J].
Chen, Chaio-Shiung ;
Chen, Heng-Hui .
NONLINEAR DYNAMICS, 2011, 63 (1-2) :171-181