Sampling and refinement protocols for template-based macrocycle docking: 2018 D3R Grand Challenge 4

被引:9
|
作者
Kotelnikov, Sergei [1 ,2 ,3 ]
Alekseenko, Andrey [1 ,2 ]
Liu, Cong [1 ,4 ]
Ignatov, Mikhail [1 ,2 ,5 ]
Padhorny, Dzmitry [1 ,2 ]
Brini, Emiliano [1 ]
Lukin, Mark [6 ]
Coutsias, Evangelos [1 ,2 ]
Dill, Ken A. [1 ,4 ,7 ]
Kozakov, Dima [1 ,2 ,5 ]
机构
[1] SUNY Stony Brook, Laufer Ctr Phys & Quantitat Biol, Stony Brook, NY 11794 USA
[2] SUNY Stony Brook, Dept Appl Math & Stat, Stony Brook, NY 11794 USA
[3] Innopolis Univ, Innopolis, Russia
[4] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[5] SUNY Stony Brook, Inst Adv Computat Sci, Stony Brook, NY 11794 USA
[6] SUNY Stony Brook, Dept Pharmacol Sci, Stony Brook, NY 11794 USA
[7] SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D3R; Protein-ligand docking; Template-based docking; Macrocycles; BACE-1; PROTEIN DOCKING; SIDE-CHAIN; PERFORMANCE; PREDICTION; MINIMIZATION; PARAMETERS; ACCURACY;
D O I
10.1007/s10822-019-00257-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We describe a new template-based method for docking flexible ligands such as macrocycles to proteins. It combines Monte-Carlo energy minimization on the manifold, a fast manifold search method, with BRIKARD for complex flexible ligand searching, and with the MELD accelerator of Replica-Exchange Molecular Dynamics simulations for atomistic degrees of freedom. Here we test the method in the Drug Design Data Resource blind Grand Challenge competition. This method was among the best performers in the competition, giving sub-angstrom prediction quality for the majority of the targets.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 50 条
  • [41] Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking
    Olsson, Martin A.
    Garcia-Sosa, Alfonso T.
    Ryde, Ulf
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2018, 32 (01) : 211 - 224
  • [42] Monte Carlo on the manifold and MD refinement for binding pose prediction of protein–ligand complexes: 2017 D3R Grand Challenge
    Mikhail Ignatov
    Cong Liu
    Andrey Alekseenko
    Zhuyezi Sun
    Dzmitry Padhorny
    Sergei Kotelnikov
    Andrey Kazennov
    Ivan Grebenkin
    Yaroslav Kholodov
    Istvan Kolosvari
    Alberto Perez
    Ken Dill
    Dima Kozakov
    Journal of Computer-Aided Molecular Design, 2019, 33 : 119 - 127
  • [43] Protein–ligand pose and affinity prediction: Lessons from D3R Grand Challenge 3
    Panagiotis I. Koukos
    Li C. Xue
    Alexandre M. J. J. Bonvin
    Journal of Computer-Aided Molecular Design, 2019, 33 : 83 - 91
  • [44] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18
  • [45] Binding affinities of the farnesoid X receptor in the D3R Grand Challenge 2 estimated by free-energy perturbation and docking
    Martin A. Olsson
    Alfonso T. García-Sosa
    Ulf Ryde
    Journal of Computer-Aided Molecular Design, 2018, 32 : 211 - 224
  • [46] Ranking docking poses by graph matching of protein–ligand interactions: lessons learned from the D3R Grand Challenge 2
    Priscila da Silva Figueiredo Celestino Gomes
    Franck Da Silva
    Guillaume Bret
    Didier Rognan
    Journal of Computer-Aided Molecular Design, 2018, 32 : 75 - 87
  • [47] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [48] Shape similarity guided pose prediction: lessons from D3R Grand Challenge 3
    Ashutosh Kumar
    Kam Y. J. Zhang
    Journal of Computer-Aided Molecular Design, 2019, 33 : 47 - 59
  • [49] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xu, Xianjin
    Yan, Chengfei
    Zou, Xiaoqin
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2017, 31 (08) : 689 - 699
  • [50] Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015
    Xianjin Xu
    Chengfei Yan
    Xiaoqin Zou
    Journal of Computer-Aided Molecular Design, 2017, 31 : 689 - 699