Linearized Conservative Finite Element Methods for the Nernst-Planck-Poisson Equations

被引:44
作者
Gao, Huadong [1 ]
He, Dongdong [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Nernst-Planck-Poisson equations; Finite element methods; Unconditional convergence; Optimal error estimate; Conservative schemes; ERROR ANALYSIS; SYSTEM; DISCRETIZATION; TRANSPORT; MODELS;
D O I
10.1007/s10915-017-0400-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to present and study new linearized conservative schemes with finite element approximations for the Nernst-Planck-Poisson equations. For the linearized backward Euler FEM, an optimal error L-2 estimate is provided almost unconditionally (i.e., when the mesh size h and time step tau are less than a small constant). Global mass conservation and electric energy decay of the schemes are also proved. Extension to second-order time discretizations is given. Numerical results in both two- and three-dimensional spaces are provided to confirm our theoretical analysis and show the optimal convergence, unconditional stability, global mass conservation and electric energy decay properties of the proposed schemes.
引用
收藏
页码:1269 / 1289
页数:21
相关论文
共 31 条
[1]  
Anders Logg G.W., 2012, Lecture Notes in Computational Science and Engineering, V84, P731, DOI [10.1007/978-3-642-23099-8, DOI 10.1007/978-3-642-23099-8]
[2]  
[Anonymous], 2002, TEXTS APPL MATH
[3]   On the finite element solution of the pure Neumann problem [J].
Bochev, P ;
Lehoucq, RB .
SIAM REVIEW, 2005, 47 (01) :50-66
[4]   NUMERICAL-SIMULATION OF SEMICONDUCTOR-DEVICES [J].
BREZZI, F ;
MARINI, LD ;
PIETRA, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 75 (1-3) :493-514
[5]   TWO-DIMENSIONAL EXPONENTIAL FITTING AND APPLICATIONS TO DRIFT-DIFFUSION MODELS [J].
BREZZI, F ;
MARINI, LD ;
PIETRA, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1342-1355
[6]   Positivity preserving discretization of time dependent semiconductor drift-diffusion equations [J].
Brunk, Markus ;
Kvaerno, Anne .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) :1289-1301
[7]  
Chen Y.-Z., 1998, Translations of Mathematical Monographs, V174
[8]  
Evans LC, 2010, Partial Differential Equations
[9]  
Flavell A., 2013, J. Comput. Electron, V15, P1
[10]   ON THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS [J].
GAJEWSKI, H ;
GROGER, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 113 (01) :12-35