Code Automorphisms and Permutation Decoding of Certain Reed-Solomon Binary Images

被引:2
作者
Lim, Fabian [1 ]
Fossorier, Marc [2 ]
Kavcic, Aleksandar [1 ]
机构
[1] Univ Hawaii Manoa, Dept Elect Engn, Honolulu, HI 96822 USA
[2] ETIS ENSEA UCP CNRS UMR 8051, F-95014 Cergy Pontoise, France
基金
美国国家科学基金会;
关键词
Automorphism group; binary images; finite fields; permutation decoding; Reed-Solomon (RS) codes; Q-ARY IMAGE; LINEAR BLOCK-CODES; MINIMUM-DISTANCE;
D O I
10.1109/TIT.2010.2059633
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider primitive Reed-Solomon (RS) codes over the field F-2m of length n = 2(m) - 1. Building on Lacan et al.'s results for the case of binary extension fields, we show that the binary images of certain two-parity symbol RS [n,n - 2,3] code, have a code automorphism subgroup related to the general linear group GL(m, 2). For these codes, we obtain a code automorphism subgroup of order m! . vertical bar GL(m, 2)vertical bar. An explicit algorithm is given to compute a code automorphism (if it exists), that sends a particular choice of m binary positions, into binary positions that correspond to a single symbol of the RS code. If one such automorphism exists for a particular choice of m binary symbol positions, we show that there are at least m! of them. Computationally efficient permutation decoders are designed for the two-parity symbol RS [n, n - 2, 3] codes. Simulation results are shown for the additive white Gaussian noise (AWGN) channel. For the finite fields proves(23) and proves(24), we go on to derive subgroups of code automorphisms, belonging to binary images of certain RS codes that have three-parity symbols. A table of code automorphism subgroup orders, computed using the Groups, Algorithms, and Programming (GAP) software, is tabulated for the fields F-23, F-24, and F-25.
引用
收藏
页码:5253 / 5273
页数:21
相关论文
共 20 条
[11]   Algebraic soft-decision decoding of Reed-Solomon codes [J].
Koetter, R ;
Vardy, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :2809-2825
[12]   The q-ary image of some qm-ary cyclic codes:: Permutation group and soft-decision decoding [J].
Lacan, J ;
Delpeyroux, E .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2002, 48 (07) :2069-2078
[13]   COMPUTING AUTOMORPHISM-GROUPS OF ERROR-CORRECTING CODES [J].
LEON, JS .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (03) :496-511
[14]   Notes on the Automorphism Groups of Reed Solomon Binary Images [J].
Lim, Fabian ;
Fossorier, Marc ;
Kavic, Aleksandar .
2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, :1813-+
[15]  
Lin S., 2000, ERROR CONTROL CODING, Vsecond
[16]   On the minimum distance of a q-ary image of a q(m)-ary cyclic code [J].
Sakakibara, K ;
Kasahara, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1996, 42 (05) :1631-1635
[17]  
Sakakibara K., 1989, Electronics and Communications in Japan, Part 3 (Fundamental Electronic Science), V72, P14, DOI 10.1002/ecjc.4430720202
[18]   THE Q-ARY IMAGE OF A Q(M)-ARY CYCLIC CODE [J].
SEGUIN, GE .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (02) :387-399
[19]   AN IMPROVEMENT TO GENERALIZED-MINIMUM-DISTANCE DECODING [J].
TAIPALE, DJ ;
PURSLEY, MB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (01) :167-172
[20]   BIT-LEVEL SOFT-DECISION DECODING OF REED-SOLOMON CODES [J].
VARDY, A ;
BEERY, Y .
IEEE TRANSACTIONS ON COMMUNICATIONS, 1991, 39 (03) :440-444