Integral formulas for the r-mean curvature linearized operator of a hypersurface

被引:21
作者
Alencar, H
Colares, AG
机构
[1] Univ Fed Alagoas, Dept Matemat, BR-57072970 Maceio, AL, Brazil
[2] Univ Fed Ceara, Dept Matemat, BR-60455760 Fortaleza, Ceara, Brazil
关键词
integral formula; linearized operator L-r; r-mean curvature;
D O I
10.1023/A:1006555603714
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a normal variation of a hypersurface M-n in a space form Q(c)(n+1) by a normal vector field fN, R. Reilly proved: d/dt Sr+1(t)\(t=0)=L(r)f + (S1Sr+1-(r+2)Sr+2)f + c(n-r)S(r)f, where L-r (0 less than or equal to r less than or equal to n-1) is the linearized operator of the (r + 1)-mean curvature Sr+1 of M-n given by L-r = div(P-r del); that is, L-r = the divergence of the rth Newton transformation P-r of the second fundamental form applied to the gradient del, and L-0 = Delta the Laplacian of Mn. From the Dirichlet integral formula for L-r, integral(Mn) (f L(r)g+[P-r del f, del g]) = 0, new integral formulas are obtained by making different choices of f and g, generalizing known formulas for the Laplacian. The method gives a systematic process for proofs and a unified treatment for some Minkowski type formulas, via L-r.
引用
收藏
页码:203 / 220
页数:18
相关论文
共 22 条
[11]  
Hsiung C.C., 1956, Pac. J. Math, V6, P291, DOI [DOI 10.2140/PJM.1956.6.291, 10.2140/pjm.1956.6.291]
[12]  
HSIUNG CC, 1954, B AM MATH SOC, V60, P349
[13]  
Katsurada Y., 1962, Ann. Mat. Pura Appl, V57, P283, DOI DOI 10.1007/BF02417744
[14]  
KOHLMANN P, 1994, MATH NACHR, V166, P217
[15]  
KOREVAAR NJ, 1988, J DIFFER GEOM, V27, P221
[16]  
MONTIEL S, 1991, DIFFERENTIAL GEOMETR, V52, P279
[17]  
Reilly RC., 1973, J DIFFER GEOM, V8, P465
[18]  
ROSENBERG H, 1993, B SCI MATH, V117, P211
[19]  
RUND H, 1971, ANN MAT PUR APPL, V88, P99
[20]  
SHAHIN JK, 1968, P AM MATH SOC, V19, P609