Design of active devices based on rare-earth-doped glass/glass ceramic: from the material characterization to the device parameter refinement

被引:0
作者
Falconi, Mario Christian [1 ]
Loconsole, Antonella Maria [1 ]
Laneve, Dario [1 ]
Lam Thi Ngoc Tran [2 ,3 ,4 ]
Zur, Lidia [3 ]
Chiasera, Alessandro [3 ]
Balda, Rolindes [5 ,6 ]
Fernandez, Joaquin [7 ]
Gluchowski, Pawel [8 ]
Lukowiak, Anna [8 ]
Ferrari, Maurizio [3 ]
Prudenzano, Francesco [1 ]
机构
[1] Polytech Univ Bari, Dept Elect & Informat Engn, Bari, Italy
[2] CNR, Ist Foton & Nanotecnol, Milan, Italy
[3] CNR, Ist Foton & Nanotecnol, Fdn Bruno Kessler, Povo, Italy
[4] Ho Chi Minh City Univ Technol & Educ, Dept Mat Technol, Ho Chi Minh City, Vietnam
[5] Univ Pais Vasco UPV EHU, Dept Fis Aplicada 1, Escuela Ingn Bilbao, Bilbao, Spain
[6] Mat Phys Ctr CSIC UPV EHU, San Sebastian, Spain
[7] Donostia Int Phys Ctr DIPC, San Sebastian, Spain
[8] Inst Low Temp & Struct Res PAN, Wroclaw, Poland
来源
FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS II | 2020年 / 11357卷
关键词
energy transfer; erbium; glass ceramic; rare-earth; tin dioxide; PARTICLE SWARM OPTIMIZATION;
D O I
10.1117/12.2551410
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The accurate knowledge of the rare-earth spectroscopic parameters is fundamental for the design of both fiber and integrated active devices. The lifetimes, the branching ratios, the up-conversion, the cross-relaxation, the energy transfer coefficients of the rare-earths must be preliminarily identified before the design. The particle swarm optimization (PSO) is an efficient global search approach; when applied to rare-earth-doped host materials and devices, it permits the rare-earth spectroscopic characterization starting from optical gain measurements. The model for the peculiar case of a SiO2 SnO2 : Er3+ glass ceramic system is illustrated. Two different, direct and indirect, pumping schemes are considered for the rare-earth spectroscopic characterization. In the direct pumping scheme, a pump at 378 nm wavelength is used to excite the erbium ions. The SnO2 does not take part in the excitation process. On the contrary, in the indirect pumping scheme the SnO2 is involved by exploiting the absorption band around 307 nm wavelength via a proper pump. In this case, the energy transfer between the SnO2 and the Er3+ ions occurs during the amplification process. The fabricated SiO2 - SnO2 : Er3+ glass ceramic slab waveguide is simulated via a finite element method (FEM) code and a homemade code is used to solve the rate equations. In order to identify the value of the SnO2-Er3+ energy transfer coefficient, the ratio between the two simulated optical gains at 1533 nm wavelength, with the direct and indirect pumping schemes, is compared with the ratio between the two emission intensity measurements.
引用
收藏
页数:7
相关论文
共 21 条
[1]   Photonic glass-ceramics: consolidated outcomes and prospects [J].
Boulard, Brigitte ;
Van, Tran T. T. ;
Lukowiak, Anna ;
Bouajaj, Adel ;
Goncalves, Rogeria Rocha ;
Chiappini, Andrea ;
Chiasera, Alessandro ;
Blanc, Wilfried ;
Duran, Alicia ;
Turrell, Sylvia ;
Prudenzano, Francesco ;
Scotognella, Francesco ;
Ramponi, Roberta ;
Marciniak, Marian ;
Righini, Giancarlo C. ;
Ferrari, Maurizio .
OXIDE-BASED MATERIALS AND DEVICES VI, 2015, 9364
[2]   Handling multiple objectives with particle swarm optimization [J].
Coello, CAC ;
Pulido, GT ;
Lechuga, MS .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2004, 8 (03) :256-279
[3]   Glass-ceramics: A class of nanostructured materials for photonics [J].
de Pablos-Martin, A. ;
Ferrari, M. ;
Pascual, M. J. ;
Righini, G. C. .
RIVISTA DEL NUOVO CIMENTO, 2015, 38 (7-8) :311-369
[4]   Design of an Efficient Pulsed Dy3+: ZBLAN Fiber Laser Operating in Gain Switching Regime [J].
Falconi, Mario Christian ;
Laneve, Dario ;
Bozzetti, Michele ;
Fernandez, Toney Teddy ;
Galzerano, Gianluca ;
Prudenzano, Francesco .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2018, 36 (23) :5327-5333
[5]   Dysprosium-Doped Chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR Emission [J].
Falconi, Mario Christian ;
Palma, Giuseppe ;
Starecki, Florent ;
Nazabal, Virginie ;
Troles, Johann ;
Adam, Jean-Luc ;
Taccheo, Stefano ;
Ferrari, Maurizio ;
Prudenzano, Francesco .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2017, 35 (02) :265-273
[6]   Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser [J].
Falconi, Mario Christian ;
Palma, Giuseppe ;
Starecki, Florent ;
Nazabal, Virginie ;
Troles, Johann ;
Taccheo, Stefano ;
Ferrari, Maurizio ;
Prudenzano, Francesco .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2016, 28 (18) :1984-1987
[7]   Particle swarm optimization-based approach for accurate evaluation of upconversion parameters in Er3+-doped fibers [J].
Giaquinto, A. ;
Mescia, L. ;
Fornarelli, G. ;
Prudenzano, F. .
OPTICS LETTERS, 2011, 36 (02) :142-144
[8]   Transparent Glass-Ceramics Produced by Sol-Gel: A Suitable Alternative for Photonic Materials [J].
Gorni, Giulio ;
Velazquez, Jose J. ;
Mosa, Jadra ;
Balda, Rolindes ;
Fernandez, Joaquin ;
Duran, Alicia ;
Castro, Yolanda .
MATERIALS, 2018, 11 (02)
[9]   Electromagnetic Design of Microwave Cavities for Side-Coupled Linear Accelerators: A Hybrid Numerical/Analytical Approach [J].
Laneve, Dario ;
Falconi, Mario Christian ;
Bozzetti, Michele ;
Rutigliani, Giovanni ;
Prisco, Raffaele Andrea ;
Dimiccoli, Vincenzo ;
Prudenzano, Francesco .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2018, 65 (08) :2233-2239
[10]  
Lukowiak A., 2014, P ICTON 2014 P ICTON 2014, P1