Exact integration formulas for the finite volume element method on simplicial meshes

被引:6
作者
Voitovich, T. V.
Vandewalle, S.
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Louvain, Belgium
[2] Univ Freiburg, Inst Appl Math, D-79104 Freiburg, Germany
关键词
finite volume element method; barycentric coordinates; integration formulas;
D O I
10.1002/num.20210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article considers the technological aspects of the finite volume element method for the numerical solution of partial differential equations on simplicial grids in two and three dimensions. We derive new classes of integration formulas for the exact integration of generic monomials of barycentric coordinates over different types of fundamental shapes corresponding to a barycentric dual mesh. These integration formulas constitute an essential component for the development of high-order accurate finite volume element schemes. Numerical examples are presented that illustrate the validity of the technology. (c) 2007 Wiley Periodicals, Inc.
引用
收藏
页码:1059 / 1082
页数:24
相关论文
共 19 条
  • [1] EXPERIMENTAL AND THEORETICAL INVESTIGATION OF BACKWARD-FACING STEP FLOW
    ARMALY, BF
    DURST, F
    PEREIRA, JCF
    SCHONUNG, B
    [J]. JOURNAL OF FLUID MECHANICS, 1983, 127 (FEB) : 473 - 496
  • [2] Baliga B. R., 1980, Numerical Heat Transfer, V3, P393, DOI 10.1080/01495728008961767
  • [3] SOME ERROR-ESTIMATES FOR THE BOX METHOD
    BANK, RE
    ROSE, DJ
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) : 777 - 787
  • [4] CAI Z, 1991, SIAM J NUMER ANAL, V38, P392
  • [5] Cai Z., 1997, COMPUTAT GEOSCI, V1, P289
  • [6] CAI ZQ, 1991, NUMER MATH, V58, P713
  • [7] Eisenberg M. A., 1973, International Journal for Numerical Methods in Engineering, V7, P574, DOI 10.1002/nme.1620070421
  • [8] ON 1ST AND 2ND ORDER BOX SCHEMES
    HACKBUSCH, W
    [J]. COMPUTING, 1989, 41 (04) : 277 - 296
  • [9] Exact integrations of polynomials and symmetric quadrature formulas over arbitrary polyhedral grids
    Liu, Y
    Vinokur, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 140 (01) : 122 - 147
  • [10] CO-LOCATED EQUAL-ORDER CONTROL-VOLUME FINITE-ELEMENT METHOD FOR 2-DIMENSIONAL AXISYMMETRICAL INCOMPRESSIBLE FLUID-FLOW
    MASSON, C
    SAABAS, HJ
    BALIGA, BR
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1994, 18 (01) : 1 - 26