Two-order graph convolutional networks for semi-supervised classification

被引:19
|
作者
Fu Sichao [1 ]
Liu Weifeng [1 ]
Li Shuying [2 ]
Zhou Yicong [3 ]
机构
[1] China Univ Petr East China, Coll Informat & Control Engn, Qingdao 266580, Shandong, Peoples R China
[2] Xian Univ Posts & Telecommun, Sch Automat, Xian 710121, Shaanxi, Peoples R China
[3] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
approximation theory; learning (artificial intelligence); pattern classification; graph theory; convolutional neural nets; semisupervised classification; deep learning algorithms; natural language processing; diffusion-convolutional neural networks; GCN algorithm; one-order localised spectral graph filter; one-order polynomial; Laplacian; undirect neighbour structure information; graph structure data; two-order spectral graph convolutions; two-order approximation; two-order polynomial; abundant localised structure information; graph data; computer vision; two-order GCN; layerwise GCN; two-order graph convolutional networks; semi-supervised classification; TUTORIAL;
D O I
10.1049/iet-ipr.2018.6224
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, deep learning (DL) algorithms have achieved great success in many applications including computer vision and natural language processing. Many different kinds of DL models have been reported, such as DeepWalk, LINE, diffusionconvolutional neural networks, graph convolutional networks (GCN), and so on. The GCN algorithm is a variant of convolutional neural network and achieves significant superiority by using a one-order localised spectral graph filter. However, only a one-order polynomial in the Laplacian of GCN has been approximated and implemented, which ignores undirect neighbour structure information. The lack of rich structure information reduces the performance of the neural networks in the graph structure data. In this study, the authors deduce and simplify the formula of two-order spectral graph convolutions to preserve rich local information. Furthermore, they build a layerwise GCN based on this two-order approximation, i.e. two-order GCN (TGCN) for semi-supervised classification. With the two-order polynomial in the Laplacian, the proposed TGCN model can assimilate abundant localised structure information of graph data and then boosts the classification significantly. To evaluate the proposed solution, extensive experiments are conducted on several popular datasets including the Citeseer, Cora, and PubMed dataset. Experimental results demonstrate that the proposed TGCN outperforms the state-of-art methods.
引用
收藏
页码:2763 / 2771
页数:9
相关论文
共 50 条
  • [1] Two-order Approximate Spectral Convolutional Model for Semi-Supervised Classification
    Gong P.-L.
    Ai L.-H.
    Zidonghua Xuebao/Acta Automatica Sinica, 2021, 47 (05): : 1067 - 1076
  • [2] High-order graph convolutional networks for semi-supervised classification
    Yu, Yongbo
    Sun, Kin
    Dong, Junyu
    Yu, Hui
    DEVELOPMENTS OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN COMPUTATION AND ROBOTICS, 2020, 12 : 717 - 724
  • [3] Adaptive graph convolutional collaboration networks for semi-supervised classification
    Fu, Sichao
    Wang, Senlin
    Liu, Weifeng
    Liu, Baodi
    Zhou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    INFORMATION SCIENCES, 2022, 611 : 262 - 276
  • [4] Bayesian Graph Convolutional Neural Networks for Semi-Supervised Classification
    Zhang, Yingxue
    Pal, Soumyasundar
    Coates, Mark
    Ustebay, Deniz
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5829 - 5836
  • [5] Discriminative Graph Convolutional Networks for Semi-supervised Node Classification
    Ai, Guoguo
    Yan, Hui
    Chen, Yuxin
    2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 372 - 376
  • [6] HesGCN: Hessian graph convolutional networks for semi-supervised classification
    Fu, Sichao
    Liu, Weifeng
    Tao, Dapeng
    Zhou, Yicong
    Nie, Liqiang
    INFORMATION SCIENCES, 2020, 514 : 484 - 498
  • [7] Progressive Graph Convolutional Networks for Semi-Supervised Node Classification
    Heidari, Negar
    Iosifidis, Alexandros
    IEEE ACCESS, 2021, 9 : 81957 - 81968
  • [8] Dynamic Graph Learning Convolutional Networks for Semi-supervised Classification
    Fu, Sichao
    Liu, Weifeng
    Guan, Weili
    Zhou, Yicong
    Tao, Dapeng
    Xu, Changsheng
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (01)
  • [9] Adaptive graph convolutional collaboration networks for semi-supervised classification
    Fu, Sichao
    Wang, Senlin
    Liu, Weifeng
    Liu, Baodi
    Zhou, Bin
    You, Xinhua
    Peng, Qinmu
    Jing, Xiao-Yuan
    Information Sciences, 2022, 611 : 262 - 276
  • [10] Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification
    Zhuang, Chenyi
    Ma, Qiang
    WEB CONFERENCE 2018: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW2018), 2018, : 499 - 508