UNSUPERVISED MEDICAL IMAGE ALIGNMENT WITH CURRICULUM LEARNING

被引:6
作者
Burduja, Mihail [1 ]
Ionescu, Radu Tudor [1 ]
机构
[1] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
来源
2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2021年
关键词
Unsupervised learning; image registration; medical image alignment; curriculum learning;
D O I
10.1109/ICIP42928.2021.9506067
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore different curriculum learning methods for training convolutional neural networks on the task of deformable pairwise 3D medical image registration. To the best of our knowledge, we are the first to attempt to improve performance by training medical image registration models using curriculum learning, starting from an easy training setup in the first training stages, and gradually increasing the complexity of the setup. On the one hand, we consider two existing curriculum learning approaches, namely curriculum dropout and curriculum by smoothing. On the other hand, we propose a novel and simple strategy to achieve curriculum, namely to use purposely blurred images at the beginning, then gradually transit to sharper images in the later training stages. Our experiments with an underlying state-of-the-art deep learning model show that curriculum learning can lead to superior results compared to conventional training. Additionally, we show that curriculum by input blur has the best accuracy versus speed trade-off among the compared curriculum learning approaches.
引用
收藏
页码:3787 / 3791
页数:5
相关论文
共 27 条
[1]   A fast diffeomorphic image registration algorithm [J].
Ashburner, John .
NEUROIMAGE, 2007, 38 (01) :95-113
[2]   An Unsupervised Learning Model for Deformable Medical Image Registration [J].
Balakrishnan, Guha ;
Zhao, Amy ;
Sabuncu, Mert R. ;
Guttag, John ;
Dalca, Adrian V. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9252-9260
[3]   Computing large deformation metric mappings via geodesic flows of diffeomorphisms [J].
Beg, MF ;
Miller, MI ;
Trouvé, A ;
Younes, L .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2005, 61 (02) :139-157
[4]  
Bengio Y., 2009, P 26 ANN INT C MACH, DOI DOI 10.1145/1553374.15533802,5
[5]  
BESL PJ, 1992, P SOC PHOTO-OPT INS, V1611, P586, DOI 10.1117/12.57955
[6]  
Bilic P., 2019, The liver tumor segmentation benchmark (LiTS).
[7]   A SURVEY OF IMAGE REGISTRATION TECHNIQUES [J].
BROWN, LG .
COMPUTING SURVEYS, 1992, 24 (04) :325-376
[8]   3D BRAIN MAPPING USING A DEFORMABLE NEUROANATOMY [J].
CHRISTENSEN, GE ;
RABBITT, RD ;
MILLER, MI .
PHYSICS IN MEDICINE AND BIOLOGY, 1994, 39 (03) :609-618
[9]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[10]   Comparison and Evaluation of Methods for Liver Segmentation From CT Datasets [J].
Heimann, Tobias ;
van Ginneken, Bram ;
Styner, Martin A. ;
Arzhaeva, Yulia ;
Aurich, Volker ;
Bauer, Christian ;
Beck, Andreas ;
Becker, Christoph ;
Beichel, Reinhard ;
Bekes, Gyoergy ;
Bello, Fernando ;
Binnig, Gerd ;
Bischof, Horst ;
Bornik, Alexander ;
Cashman, Peter M. M. ;
Chi, Ying ;
Cordova, Andres ;
Dawant, Benoit M. ;
Fidrich, Marta ;
Furst, Jacob D. ;
Furukawa, Daisuke ;
Grenacher, Lars ;
Hornegger, Joachim ;
Kainmueller, Dagmar ;
Kitney, Richard I. ;
Kobatake, Hidefumi ;
Lamecker, Hans ;
Lange, Thomas ;
Lee, Jeongjin ;
Lennon, Brian ;
Li, Rui ;
Li, Senhu ;
Meinzer, Hans-Peter ;
Nemeth, Gabor ;
Raicu, Daniela S. ;
Rau, Anne-Mareike ;
van Rikxoort, Eva M. ;
Rousson, Mikael ;
Rusko, Laszlo ;
Saddi, Kinda A. ;
Schmidt, Guenter ;
Seghers, Dieter ;
Shimizu, Akinobu ;
Slagmolen, Pieter ;
Sorantin, Erich ;
Soza, Grzegorz ;
Susomboon, Ruchaneewan ;
Waite, Jonathan M. ;
Wimmer, Andreas ;
Wolf, Ivo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2009, 28 (08) :1251-1265