Multiple exciton generation in quantum dot-based solar cells

被引:67
作者
Goodwin, Heather [1 ]
Jellicoe, Tom C. [1 ,2 ]
Davis, Nathaniel J. L. K. [1 ]
Bohm, Marcus L. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, J J Thomson Ave, Cambridge CB3 0HE, England
[2] Particle Works, Unit 3,Anglian Business Pk, Royston SG8 5TW, England
基金
英国工程与自然科学研究理事会;
关键词
multiple exciton generation; quantum dots; solar cells; ULTRAFAST ELECTRON-TRANSFER; DETAILED BALANCE LIMIT; CARRIER MULTIPLICATION; SEMICONDUCTOR NANOCRYSTALS; IMPACT IONIZATION; PBSE NANOCRYSTALS; TRIPLET EXCITONS; COLLOIDAL NANOCRYSTALS; SILICON NANOCRYSTALS; SURFACE PASSIVATION;
D O I
10.1515/nanoph-2017-0034
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Multiple exciton generation (MEG) in quantumconfined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one chargecarrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.
引用
收藏
页码:111 / 126
页数:16
相关论文
共 144 条
[61]   Efficient, stable infrared photovoltaics based on solution-cast colloidal quantum dots [J].
Koleilat, Ghada I. ;
Levina, Larissa ;
Shukla, Harnik ;
Myrskog, Stefan H. ;
Hinds, Sean ;
Pattantyus-Abraham, Andras G. ;
Sargent, Edward H. .
ACS NANO, 2008, 2 (05) :833-840
[62]   QUANTUM EFFICIENCIES EXCEEDING UNITY DUE TO IMPACT IONIZATION IN SILICON SOLAR-CELLS [J].
KOLODINSKI, S ;
WERNER, JH ;
WITTCHEN, T ;
QUEISSER, HJ .
APPLIED PHYSICS LETTERS, 1993, 63 (17) :2405-2407
[63]   Ultrasensitive solution-cast quantum dot photodetectors [J].
Konstantatos, Gerasimos ;
Howard, Ian ;
Fischer, Armin ;
Hoogland, Sjoerd ;
Clifford, Jason ;
Klem, Ethan ;
Levina, Larissa ;
Sargent, Edward H. .
NATURE, 2006, 442 (7099) :180-183
[64]   The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices [J].
Kramer, Illan J. ;
Sargent, Edward H. .
CHEMICAL REVIEWS, 2014, 114 (01) :863-882
[65]   Passivation Using Molecular Halides Increases Quantum Dot Solar Cell Performance [J].
Lan, Xinzheng ;
Voznyy, Oleksandr ;
Kiani, Amirreza ;
de Arquer, F. Pelayo Garcia ;
Abbas, Abdullah Saud ;
Kim, Gi-Hwan ;
Liu, Mengxia ;
Yang, Zhenyu ;
Walters, Grant ;
Xu, Jixian ;
Yuan, Mingjian ;
Ning, Zhijun ;
Fan, Fengjia ;
Kanjanaboos, Pongsakorn ;
Kramer, Illan ;
Zhitomirsky, David ;
Lee, Philip ;
Perelgut, Alexander ;
Hoogland, Sjoerd ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2016, 28 (02) :299-304
[66]  
Lan XZ, 2014, NAT MATER, V13, P233, DOI [10.1038/NMAT3816, 10.1038/nmat3816]
[67]   Optical phonons in colloidal CdSe nanorods [J].
Lange, Holger ;
Mohr, Marcel ;
Artemyev, Mikhail ;
Woggon, Ulrike ;
Niermann, Tore ;
Thomsen, Christian .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (10) :2488-2497
[68]  
Law M, 2009, C REC IEEE PHOT SPEC
[69]   Determining the Internal Quantum Efficiency of PbSe Nanocrystal Solar Cells with the Aid of an Optical Model [J].
Law, Matt ;
Beard, Matthew C. ;
Choi, Sukgeun ;
Luther, Joseph M. ;
Hanna, Mark C. ;
Nozik, Arthur J. .
NANO LETTERS, 2008, 8 (11) :3904-3910
[70]   On the absorption cross section of CdSe nanocrystal quantum dots [J].
Leatherdale, CA ;
Woo, WK ;
Mikulec, FV ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (31) :7619-7622